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Abstract—The researcher interested in spline function
because it is necessary function in interpolation process, by
putting a certain condition for spline function from forth degree
which is as follows

S;(X,) = 0,5/ (X,,) =0, then the aim of this research
is to change the previous boundary conditions which is as
S/(%) = T"(%):S; (Xpr) = F"(X,,) to get minimum

error for spline function from forth degree.

Index Terms— Spline function ; Boundary Conditions.

I. INTRODUCTION

Spline functions appears in the late middle of twentieth
century, According to Schoenbery [5] , the interest in Spline
functions is due to the fact that , Spline function are good tool
for the numerical approximation of functions and that they
suggest new ,challenging and rewarding problems . For more
information about a Spline function , one is referred to Alberg
,Milson and walsh [1] .Lacunary interpolation by Spline
appears whenever observation gives scattered or irregular
information about a function and its derivatives , but with out
Hermite condition . Mathematically , in the problem of

interpolation given data aiyj by polynomial pn(x) of

degree of most n satisfying :

212300 j =012,y

we have Hermit interpolation if for i , the order j of
derivatives in form unbroken sequence . If some of the
sequence are broken , we have lacunary interpolation . In
another communications we shall give the applicationsof
Spline functions obtaining the approximation solution of
boundary value problem , for more about applications of
Spline functions , see [2,4] . For description our problem, let

AO=X, <X <X <...<X,, =1 by a uniform

partition of the interval [0,1] with

[ .
X, =—— ,I= O,2,....,2m and n=2m+1 . We define
2m
the class of Spline function S (4,3, N) as follows :
any element S, (X)€S,(4,3,n) if the following

condition satisfied :

(HS.(x)eC’[0]]

(ii) S, (x)is polynomialof degree four in each[x,;, X,;,,] | (D
i=01...m-1

In this paper we prove the following :
Theorem 1:

Given arbitrary number f (X,,), f(t,) i=0,1,2...,n-1
and f @ (Xo), f@ (sz) there exists a unique spline
S,(x) €S, (4,3,n) such that
S,(%;)=f(x;) 1=012....m
S,(ty)=f(t;) i=012..m-1 2)
827 (%) = TP(%5), 877 (%n) = £ 2 (%)

Theorem 2:
Let f eC’[01]and S, € Sp(4,3,n)be a unique
spline  satisfying the condition of (theorem 1.1) , then
J5400 - 1 ()] <5.640425mw( ,%) e ] r=0123

where
w( f “”,%) =max||f @ (x) = f @ (y)|:]x—y|<h,Vx,ye[0]]

Hf(“)H — max{‘ f (4)(X)‘ }: O0<x=<1

Il. TECHNICAL PRELIMINARIES:

If p(x) is a polynomial of degree Four on [0,1] (because we
want to construct a spline function of degree four ) then we
have :

P(x)=P0)A(X)+ F’(%)Al(x) +PMA,(x)+ P (0)A,(x)+ P (DA, (x)

cieenn(3)
Where
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A (X) = %1[_27)(4 +54x° -38x +11] |
1 4 3
Al(x)zz[81x —162x" +81x]

1 4 3
Az(x):z[—27x +54x° —5x] ...(4)

A (X) = é[le4 —41x° +33x* - 7X]

1o 3
A, (X) :&[lZX —13x" + x] |

In the subsequent section we need the following values for T € C4[O,1] we have the following expansions:
4
_ / 2¢1 3£ 1l (4)
f(X2i+2) - f(XZi) + 2hf (Xzi) +2h" f (Xzi) + gh f (X )+ h f ( 12|)

X, A

1,2i — 2|+2
(0= F(6) =20 (6,) + 207 F1(x,) = SH*F7(6,) 4 SN T (4,

<A <X,

2|2— 2,2i

faa=fwa+§mxao+4fﬂu)+—mf”wm+ 2N O,

X <ﬂ’3 2i <t
32
fty2) = F0) - 3hf (X2|)+ hzf”( z.)——lhe’f”’( 2) + 43h“f‘4)(/14 2i)
t2i72 = 4,2i < X

2 4
V@J=Vwﬁ+§m%xrfhfmwm+ Lheto,,)
X, LA, <t

5,2i

f//(tzi—z) = f//(XZi) _ghfm(xzi) +§h2 f @ (ﬂvs,m)’ t2i—2 < ﬂs 2i < X

2 2
f//(tZi) = fH(Xzi)"'ghf///(xm)"‘ghzf(4)(17,2i)1 Xpi S A7 5 Sty

f//(xzi—z) = f//(XZi) —2ht ///(XZi) +2h*f® (/’lB,Zi)i Xpi o S /18,2i < Xy
7 (%.5) = " (%) +20F " (%) + 20 £ (Ao2i): Xai < g 50 < Xoiz

2
f///(tZi) = fm(XZi)+§hf (4)(2’10,2i) v X SAp g Sty }(5)

I1l. PROOF OF THEOREM 1:

The proof depends on the following representation of Sn (x) for 2iIh<x<(21+2)h , 1=01,....m—=1 we
have
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A 1 LIACTEN + 1 A

X — 2|h X — 2|h

Sy (%) = ) Ay(

+4h?S." (%, ) Ay( ) +4h%S " (x,..,) A,( ) R (6)

On using (3.0) and the condltlons
S,'(0)=f"(0) , S, =f"Q (7)
we say that Sn (X) as given by (6) satisfies (1) is fourth in [X2i , X2i+2] , = 0,1,2,....,m — 1.we also need to show that

whether it is possible to determine S” (X,; ) where 1 =1,2,....,m —1 uniquely .For this purpose we use the fact that
" (Xy,,)=S"" (x ),i=12,...,m—1 with the help of (6) and (7) reduce to

22h S//”( 2| 1)+ 2h S””( 2|) 2h S”n( 2I+2)

243 81 243 81 but (7) is a strictly tri
( 2') f(tZ') f(X2i+2)_H f (t2i72)+5 f (Xzifz)

diagonal dominant system has a unique solution[3] .
Thus S”, (X,,),1=21,2,...,m —1 can be obtained uniquely by the system (8)
This theorem is completed.

IV. ESITIMATES:
In order to prove theorem 1.2 , we need the following:

Lemma4.0:

Let E,, = ‘S” (X,;)— f”(XZi)‘ then for f €C*[0,1] we have

max E2i_ 81, w(f@: 1) ,i=012,...,m-1 (9)
108 m

Proof:

From (8) we have

(S0 ) 1t )+ S (S0 101,

35, 5 i I _ 1243 81 _
SO ) )| = | 2221000 - 22100+ 251000

243 32 35
2 )+ o () (Zi_z)—EhZf”(xm)—thf”(xm)}
B )+ SO - T O )+ S0 ()

82 70 81 1
h*f® (4 —h*f®a ah*w(f® =), <1
22 ( 82|) 27 ( 92.) 22 ( m) |a1|

The result (9) follows on using the property of diagonal dominant [3].
Lemma4.1:

Let f € C*[0,1] then
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135

() [8"(xs) = £ 0] < 22932
m

378h (1 9: 5
m

(i) |S"n (% ) = " (x,)] <
(iii) [s"n(t,) f”'(tz,)\< hw(f(‘” 1)
m

() [8" (6 )~ £ ()] < S how(F 95
m

2546 1
S'a(t, )= f' () < =—h3w(f®;
(V) [8"0 () = £ (ta)] < g NW(F i)
Proof:
From (6) we have
81 123
S”In(xmz)_ f( 2.)__f(t2|) 44f(X2i+2)_¥h S”n( 2|)__h S ”(X2i+2)
Hence
81 123
h (S”In(XZH)— fm(le))— f( 2.)__f(t2|) 44 f(X2i+2) 6_h (S””(XZi)_ f"(XZi))
123 39
66h (S”n(X2|+2) ( 2i+2))_h3fm( 2.)__6h f”(XZi)_ghzf”(XZHZ)
O+ 2RO () - ()~ (8 () - 1 ()
39
_ghz(SII"(XZH—Z) —f ! (X2i+2))
27 123

:_h4 a,W (f(4); 1) (S””( 2|)_ f“(X2|))_§h2(8”n(xzi+2)_ f”(xznz)) ;|0£2|£1
m 66

By usmg (9) the lemma (4. 1)(|) follows ,the proof of Iemma (4.2)(ii v) are similar ,we have only mention that

h3S”I”(X2i—)= 81f( Xy )+ 243f(t2, 2)— f( sia) t _h 28" (x 2ia) T £5h S"n(XZi)

N°S"n(6) = 2 F (k) + o F )+ ) - 6h 2" (%) + 6h 8" (%)

18 27 9
hzslln(tZi):ﬁf(XZi)_ﬁf(tZi)+ﬁf( 2|+2)+ h S””(X2|)__h S””(X2|+2)

and

hS (t2|)_ f(X2|) f(t2|)_ f( 2|+2) Eh S”n( 2.)‘%'125"“()(2”2)

Proof of theorem (2):
For 0<Z <1, wehave

AZ)+A(Z)+ A(2) =1 ..(10)

let X,; <Z < X,;,,.0nusing (10) and (7) , we obtain
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"= 100 = (8" 06) — £ (A2 (8" 0.0~ 1 ODACED)
(8" (t) - T () A (2 2”") Sl
................. (11)
from (4) it follows that |A0(X)| <1, |A1(X)| <1 and |A2(X)| <1
since T"(x) = F" (%) +(X=%,)FP), x, <A<X
Therefore
X— 2|h X— 2|

L = (8" (%) = £ (X)) A ) = (8" (%) = T (%) = (x = Xz.)f(4)(/1))'°b(

(4.2)(i) and |X — X;| < 2h, we obtaln

) On using lemma

L] < 8" () = £ ()] +|(x - xz.)nf“)u)\‘Ao(x 2'“‘

Therefore

L < 13'5h w(f@; 1)+2th<4>” (12)

Slmllarly

|L2|<378h w(f®; 1)+2th<4>”

L = (S"a(t,) — " () A, (= 2'“) (8" (t) — " () + £ (6) — £ (%)
) FOACTEY

From (5) we have
f " (tZI) — f " (Xz|) - hf @ (/110 2|)
where X < A 5 < t2i ,but (3t,, —Xx,) =2h
Hence |L <(8"n(ty) — " (t)|+ 2N £ (%) = FO(D), %, < A4 <X
On using the above result with lemma (4.1)(iii), we obtain
L[ < h w(f®; 1) ...... (14)
m

putting (12) ,(14) in (11) ,we obtain

M 1 956 (4) 1 (4)
8" () — " (%) < h w( f )+4th | (15)

this prove (2) for r=3 to prove (2), when r=2

since S () = £ (x) = [($"n () = £" (©)dt+(S"n (t;) — 1" (&)
ti
on using lemma (4.1)(iv) and (15) we obtain

8" (x) = £ (x)| < 987h 2w( f @, 1)+8h2Hf(4)H ....... (16)
which is proof (2) for r= 2

the proof (2) for r=1
since

Shh(x) - f'(x) = JX.(S"n(t)— fU))dt+S"a(t,) - f'(t,)

On using lemma (4.1)(v) and (16),we get
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\s'n(x) — f '(x)\ < %5()02%3\,\/( f <4>,%) +16h3H f <4>H ....... (17)

Which proof (2) for r=1, if r=0, we have

S,(x) - f(x) = T(S'n(t)— frO)dt+S, () - f(t,)

ti

since

Syp(ty)—f(t;)=0

Thus

1S,(x) = f(x)| < < 884509, w( f®, )+32h4Hf(4)H

9801

1
Since 2mh=1, then h = —— put it in above result this completes the proof of theorem (1.2) .
m

V. CONCLUSIONS:

Throughout this paper we mentioned that some time the
changes of boundary conditions effect on minimizing error
bound in the subject of lacunary interpolation by Spline
function .
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