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Abstract—An energy management strategy (EMS) plays 

important roles on the performance of hybrid electric vehicles 

(HEVs). However, the EMS based on rules is difficult to achieve 

an optimized result, whereas the EMS based on optimization 

theories cannot achieve the adaptability to different driving 

cycles. An energy management strategy of HEVs based on the 

deep reinforcement learning (DRL) is proposed in this research, 

which is fully data-driven and learning-enabled and does not 

rely on any experience of experts and accurate mathematical 

models. The proposed strategy is verified under a co-simulation 

environment, and the result shows that the proposed strategy 

achieves a 3.51% fuel saving compared to a rule-based strategy. 
 

Index Terms—hybrid electric vehicle, energy management 

strategy, deep reinforcement learning, simulation verification, 

fuel saving   

I. INTRODUCTION 

 HEVs have many advantages over traditional internal 

combustion engine (ICE) vehicles and electric vehicles due 

to the combination of the motor drive system and the engine 

drive system. At the same time, since HEVs have the 

characteristics of multi-power source and complicated drive 

system, how to adopt an efficient and reasonable energy 

management strategy and manage the energy flow between 

power sources is particularly important. At present, the 

existing energy management strategies are mainly divided 

into the following three categories: 1) Rule-based strategies 

rely on the experience of experts and experiment results, 

which are simple and effective. However, it is difficult to 

achieve an optimized result on the energy management using 

this type of strategies [1]. 2) Optimization-based strategies 

optimize the energy management for the entire trip based on 

the known or predicted future driving cycles using different 

optimal control theories [2]. The obvious disadvantage of this 

type of strategies is the dependency on the accurate trip 

information. 3) Learning-based strategies do not depend on 

future driving cycles, and the energy management strategy 

parameters can be adjusted to achieve a good adaptability to 

different driving cycles [3]. Nevertheless, this type of 

strategies are mostly based on the reinforcement learning 

(RL), and the strategies based on DRL are not fully 

developed yet [4]. 

In this research, an energy management strategy of HEVs 

based on the DRL is proposed, which combines the concept 

of the RL and a deep neural network to form a deep Q 

network, and obtains control actions directly from the input 

states. The key concept of the DRL-based energy 

management strategy is introduced, and the deep network for 

the estimation of Q function is established, and the algorithm 

 
 

calculation steps of the DRL-based energy management 

strategy is also introduced. The proposed strategy is verified 

by the computer simulation. Compared to a rule-based 

strategy, the proposed strategy performs better in both 

maintaining the stability of the state of charge (SOC) of 

battery and the fuel saving.  

II.   MODELING OF THE HEV 

Establishing an accurate simulation model of the HEV 
improves the accuracy of the energy management algorithm 
and benefits for the subsequent energy management strategy 
research. In this research, the vehicle model is obtained by 
the backward modeling, in which the effects of dynamic 
response and temperature are ignored in various parts of the 
vehicle. Figure 1 shows the process of backward modeling. 

In this research, a single-axle parallel HEV is adopted, and 

the power system structure is shown in Figure 2. It consists of 

the engine, motor, battery, automatic transmission and so on. 

According to the direction of the energy flow, the parallel 

HEV studied in this research has five main working modes: 

the electric mode, the engine mode, the hybrid driving mode, 

the charging mode, and the brake recovery mode. The vehicle 

parameters of the HEV are shown in TABLE 1. 
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Figure 1. Process of backward modeling 
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Figure2. Structure of a parallel HEV powertrain 

TABLE 1.  Vehicle parameters 

 

A.  Vehicle Dynamics 

By ignoring the lateral dynamic model of the vehicle, the 
torque demand on the wheel       

 is calculated from the 
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longitudinal dynamic model of the vehicle when the speed v 
and the slope α are given, as follows: 

        
   

    
 

     
                 

  

  
      (1) 

The rotational speed of the wheel      is calculated by:             

     
 

   
                                          (2) 

where r is the wheel radius,     is the air resistance 
coefficient, A is the frontal area, f is the rolling resistance 
coefficient, δ is the rotational mass conversion coefficient, m 
is the curb weight of the vehicle. 

B.  ICE Model 

A quasi-static model is utilized to evaluate the fuel 

economy of an engine. The average engine efficiency is 

defined as：  

          
 
 

     

       
                                         (3) 

where    is the engine torque,    is the angular speed of the 

engine, t is the engine working time,    is the fuel 

consumption, q is the specific heat of the fuel. 

The fuel consumption per second of an engine is defined 

as:                

    
 
 

      

      
                                       (4) 

where    is the fuel consumption rate,  
 

 is the gasoline 

density. 

C. Motor Model 

Ignoring the electromagnetic characteristics of the motor, 

the motor power is defined as:  

            
-                                (5) 

where    is the motor torque,    is the angular speed of the 

motor,  
 

 is the motor efficiency. 

D.  Battery Model 

SOC is an important parameter of the battery pack. The 

effect of the temperature on the battery pack is ignored in this 

research, and the internal resistance model of the battery is 

used in this research, as follows: 

    (   )    ( )-
   -√   

 
-          
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where     is the open-circuit voltage,      is the internal 

resistance,    is the terminal impedance,  
   

 is the 

maximum charging capacity,       is the power provided by 

the battery at the time step t. 

III. DRL-BASED ENERGY MANAGEMENT STRATEGY  

According to the HEV model described in Section II, a 

Q-learning based EMS is proposed in this section. 

A. DRL Theory 

The agent and the environment are two essential elements 
of the DRL. The agent needs to learn how to make decisions 
and the environment provides the external support of learning 
for the agent. The agent interacts with the environment in the 
process of executing tasks, which is an interactive process of 

the RL [5]. The RL is a type of learning that maps from the 
environmental states to the action (shown in Fig 3). S is taken 
as the set of all environmental states,      represents the 
state at time step t, A represents the set of executable actions, 
and the policy π: S→A represents a mapping from the state 
space to the action space. At each time step t, the agent 
chooses an action    from A, and the environment feeds back 
a corresponding reward    to the agent, and the state 
correspondingly transfers to the new state     . The agent 
adjusts the strategy and makes a new decision according to 
the reward. In the process of learning interaction, the 
cumulative reward from time t to the end time T is defined as:            

       ∑   
 -    

 

    
                                      (7) 

where γ [0,1] is used to weigh the impact of the future 

reward on the cumulative reward.  

The goal of the RL is to find an optimal strategy   , so that 

the agent gains the maximum cumulative reward for any state 

and at any time, that is: 

               ∑            
 
                     (8) 

The most commonly used algorithm of the RL is the 

Q-learning algorithm   (     ), which indicates that the agent 

selects the action    on the state    according to a certain 

strategy π. The state-action value function is formulated by:  

 

                                      
 

                                  (9) 

In the traditional RL, the state-action value function is 

generally formulated by iterating Berman equation, and the 

state-action value function is finally converged by continuous 

iteration, so that the optimal strategy is obtained. However, 

the environmental state is usually with high dimensions in 

practice, thus solving the optimal strategy by evaluating each 

action on each state independently is not feasible. The feature 

of the state can be learned directly from the original input by 

the deep learning (DL) represented by the deep neural 

network, so the deep Q-learning network (DQN) combined 

with the deep neural network and the Q learning is proposed 

(shown in Fig3). The agent directly learns the control strategy 

from the high-dimensional input by the DQN. The optimal 

value function is approximated by the Q-valued function with 

the parameter θ in the deep Q network: 

                                              (10) 
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Figure 3. Model of DRL 

B.  Problem Formulation 

The goal of the energy management strategy of HEVs is to 

minimize the fuel consumption under the constraints of the 

system while the power performance of the vehicle is 

Curb weight m      Gross weight G     Wheel radius r 

                      1350kg                   1690kg                 0.36m 

    Rotational mass conversion coefficient δ       Frontal area A     

                                1.05                                            3.2m2 

Friction coefficient       Wind resistance coefficient    

0.015                                   0.63 
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satisfied and the charge-discharge balance of the battery is 

maintained. Therefore, the energy management is a 

multi-objective optimization problem with constraints. The 

objective of the optimization problem is to minimize the 

cumulative cost function. The cost function is composed of 

the weighted sum of the fuel consumption and emission 

functions in the following form:     

           {∑        
 - 

   }                      

(11)  

where N is the duration of the driving cycle,      is the cost 

function. In this research, the reward function R(t) is used to 

define the cost function     . 

C.  State, Action, and Reward Determination 

State: In the DQN algorithm, the control action is directly 

dependent on the state of the system. In this research, the 

driving state of the HEV can be defined by a 3-dimension 

vector:       

   ( )   ( )  ( )    ( )                            (12) 

Action: The core of the energy management of HEVs is 

how to optimize the torque distribution ratio between the 

engine and the motor. Therefore, the output torque of the 

motor    is selected as the control action: A(t)=   . 

Meanwhile, the    is discretized into 36 points, and the 

torque of engine be subtracted from the total demand torque 

by the motor torque.  

Reward: The reward function directly affects the 

adjustment of parameters of the deep neural network. The 

DQN algorithm tends to maximize the reward function at 

each time step. In this work, the reciprocal of the 

instantaneous battery SOC is selected as the reward function, 

as follows:             

   ( ) 
 

      
                                            (13) 

D. DQN Framework 

In this research, a DQN-based framework (in Fig 4) for 

the EMS of HEVs is designed to automatically learn the 

optimal control actions from input states without any 

predictive informations and presetted rules. The neural 

network has one input layer, one output layer with the linear 

activation function, and two hidden layers with 350 neurons 

in each layer and with the Rectified Linear Unit (ReLU) 

activation function. The network is trained within the 

iteration of a conventional RL. When choosing the action, the 

relationship between "exploration" and "exploitation" needs 

to be dealt correctly. This work uses the strategy of ε-greedy 

to explore the environment, i.e. selecting random actions with 

the ε probability and choosing actions based on the maximum 

Q value with the 1-ε probability. 

The loss function is defined as: 

 ( )          (       -) -                 (11) 

where        (       -)  is the temporal difference 

(TD) target,   is the learning rate,  
-

 represents the 

parameter of the TD target network and    represents the 

parameter of the main network. Building an independent TD 

target network, which is different from the current main 

network in parameters, and calculating the loss function 

accelerates the convergence and improves the stability of the 

algorithm. 
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Figure 4. DQN-based framework for HEV EMS 

When training the neural network, the independent-identic

al-distribution condition needs to be satisfied for the training 

data. However, there are strong correlations among the traini

ng samples in a short time period when training the network 

using the RL. In this research, the experience replay is adopt

ed to break correlations among data. The pseudocode of the 

DRL is given in Algorithm 1. 

IV. SIMULATION SETUP AND RESULTS  

The DQN algorithm is trained and evaluated under the 

UDDS driving cycle. The hyper parameters of the algorithm 

are shown in the TABLE 2.  

TABLE 2.  HYPER PARAMETERS 

 

The effectiveness of the DQN algorithm is evaluated firstly. 

The track of the loss function is illustrated in Fig 5. It is 

obvious that the loss function drops rapidly but fluctuates at 

the beginning of the training. When the training is going on, 

Hyper parameters                 Value 

Mini-batch size                     48 

Replay buffer size                  1500 

Buffer start size                    150 

Learning rate                      0.9 

Discount factorγ                  0.95 

Initial ε                        1 

Final ε                       0.1 

Algorithm 1：DRL-based Energy Management 

Initialize replay buffer D to capacity N 

Initialize action-value function Q with random weight   

Initialize target action-value function  ’ with weight  
-
   

For epoch=1, M do 

Initialize sequence 𝑠 =(          )
  

For t=1, T do 

   With probability ε select a random action   

   Otherwise select 𝑎   𝑎  (𝑠  𝑎  ) 

   Execute action 𝑎  and observe reward    and 𝑠    

   Store transition(𝑠  𝑎  𝑟  𝑠   ) 

Sample random minibatch (𝑠  𝑎  𝑟  𝑠   )from D 

set    {

𝑟                                                               

𝑟        (      
   

-
)                          

} 

Perform a gradient descent step on   −   (      
   ) 

with respect to the network parameters   

Every K steps reset      

End for 

End for 
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the loss function tends to be stable. Fig 6 shows the track of 

the total reward. It is clear that the reward increases when  

 
Figure 5. Track of Loss function 

 
 

 Figure 6. Track of Total reward function 

 

 

 

 

Figure 7. Comparison of simulation results 

the number of training increases. In order to evaluate the 

proposed EMS better, its results are compared to those of a 

rule-based strategy under the UDDS condition. The 

comparison result is shown in Fig 7. For a fair comparison, 

the electric energy consumption is converted to the 

equivalent fuel consumption. The result shows that the 

DRL-based EMS achieves a 3.51% equivalent fuel 

consumption reduction compared to the rule-based strategy. 

V. CONCLUSIONS 

The energy management strategy based on the DRL, which 

combines the RL and the deep neural network to generate the 

deep Q network and obtains control actions directly from the  

input states, is proposed in this research. The simulation 

training is carried out under the UDDS driving cycle, and a 

better fuel-saving effect is achieved compared to a rule-based 

strategy. 
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