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Effect of Boundary Conditions on Buckling Load
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Abstract— It is observed that, for all cases the buckling load
increases with the mode number but at different rates depending
on whether the plate is simply supported, clamped or clamped —
simply supported. The buckling load is a minimum when the
plate is simply supported and a maximum when the plate is
clamped. Because of the rigidity of clamped boundary condition,
the buckling load is higher than in simply supported boundary
condition. It is also observed that as the mode number increases,
the plate needs additional support.

Index Terms— Boundary conditions, biaxial
classical laminated plate theory, finite element,
program, composite laminated decks plates.
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.  INTRODUCTION

The objective of this research paper is to present a complete
and up to date treatment of uniform cross section rectangular
laminated decks plates on buckling. Finite element (FE)
method is used for solving governing equations of thin
laminated composite plates and their solution using classical
laminated plate theory (CLPT). Plates are common structural
elements of most engineering structures, including aerospace,
automotive, and civil engineering structures, and their study
from theoretical and experimental analyses points of view are
fundamental to the understanding of the behavior of such
structures.

The motivation that led to the carrying out of the present study
has come from many years of studying classical laminated
plate theory (CLPT) and its analysis by the finite element (FE)
method, and also from the fact that there does not exist a
publication that contains a detailed coverage of classical
laminated plate theory and finite element method in one
volume. The present study is an attempt to fulfill the need for
a complete treatment of classical laminated theory of plates
and its solution by a numerical solution.

The material presented is intended to serve as a basis for a
critical study of the fundamentals of elasticity and several
branches of solid mechanics including advanced mechanics of
materials, theories of plates, composite materials and
numerical methods

The problem of critical buckling loads of laminated
composite plates is analyzed and solved using the energy
method which is formulated by a finite element model. In that
model, a four noded rectangular elements of a plate is
considered. Each element has three degrees of freedom at
each node. The degrees of freedom are the lateral
displacement w, and the rotations ¢ and i about the ¥ and x
axes respectively.

The effects of lamination scheme on the non — dimensional
critical buckling loads of laminated composite plates are
investigated.

The material chosen has the following properties:
E,/E;, =510,20,2540; G, = G =G5 =
0.3E;; vy = 0,23

Several numerical methods could be used in this study, but the
main ones are finite difference method (FDM), dynamic
relaxation coupled with finite difference method (DR) as is
shown in references [1] — [8], and finite element method
(FEM).

In the present work, a numerical method known as finite
element method (FEM) is used. It is a numerical procedure for
obtaining solutions to many of the problems encountered in
engineering analysis. It has two primary subdivisions. The
first utilizes discrete elements to obtain the joint
displacements and member forces of a structural framework.
The second uses the continuum elements to obtain
approximate solutions to heat transfer, fluid mechanics, and
solid mechanics problem. The formulation using the discrete
element is referred to as matrix analysis of structures and
yields results identical with the classical analysis of structural
frameworks. The second approach is the true finite element
method. It yields approximate values of the desired
parameters at specific points called nodes. A general finite
element computers program, however, is capable of solving
both types of problems and the name" finite element method"
is often used to denote both the discrete element and the
continuum element formulations.

The finite element method combines several mathematical
concepts to produce a system of linear and non — linear
equations. The number of equations is usually very large,
anywhere from 20 to 20,000 or more and requires the
computational power of the digital computer.

It is impossible to document the exact origin of the finite
element method because the basic concepts have evolved over
a period of 150 or more years. The method as we know it
today is an outgrowth of several papers published in the
1950™ that extended the matrix analysis of structures to
continuum bodies. The space exploration of the 1960"
provided money for basic research, which placed the method
of a firm mathematical foundation and stimulated the
development of multi — purpose computer programs that
implemented the method. The design of airplanes, unmanned
drones, missiles, space capsules, and the like, provided
application areas.

The finite element method (FEM) is a powerful numerical
method, which is used as a computational technique for the
solution of differential equations that arise in various fields
of engineering and applied sciences. The finite element
method is based on the concept that one can replace any
continuum by an assemblage of simply shaped elements,
called finite elements with well-defined force, displacement,
and material relationships. While one may not be able to
derive a closed — form solution for the continuum, one can

www.ijeart.com



Effect of Boundary Conditions on Buckling Load for Laminated Composite Plates

derive approximate solutions for the element assemblage
that replaces it. The approximate solutions or approximation
functions are often constructed using ideas from
interpolation theory, and hence they are also called
interpolation functions. For more details refer to References
[9], [10] and [11].

Il. MATHEMATICAL FORMULATIONS

A. Introduction

The following assumptions were made in developing the
mathematical formulations of laminated plates:

1. All layers behave elastically;

2. Displacements are small compared with the plate
thickness;

3. Perfect bonding exists between layers;

4. The laminate is equivalent to a single anisotropic
layer;

5. The plate is flat and has a constant thickness;

6. The plate buckles in a vacuum and all kinds of
damping are neglected.

Unlike homogeneous plates, where the coordinates are
chosen solely based on the plate shape, coordinates for
laminated plates should be chosen carefully. There are two
main factors for the choice of the coordinate system. The first
factor is the shape of the plate. Where rectangular plates will
be best represented by the choice of rectangular (i.e.
Cartesian) coordinates. It will be relatively easy to represent
the boundaries of such plates with coordinates. The second
factor is the fiber orientation or orthotropic. If the fibers are
set straight within each lamina, then rectangular orthotropic
would result. It is possible to set the fibers in a radial and
circular fashion, which would result in circular orthotropic.
Indeed, the fibers can also be set in elliptical directions, which
would result in elliptical orthotropic.

The choice of the coordinate system is of critical importance
for laminated plates. This is because plates with rectangular
orthotropic could be set on rectangular, triangular, circular or
other boundaries. Composite materials with rectangular
orthotropic are the most popular, mainly because of their ease
in design and manufacturing. The equations that follow are
developed for materials with rectangular orthotropic.

Figure 1 shows the geometry of a plate with rectangular
orthotropic drawn in the Cartesian coordinates X, Y, and Z or
1, 2, and 3. The parameters used in such a plate are: (1) the
length in the X-direction, (a); (2) the length in the Y —
direction (i.e. breadth), (b); and (3) the length in the Z -
direction (i.e. thickness), (h).
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Fig. 1 The geometry of a laminated composite plate

B. Fundamental equations of elasticity

Classical laminated plate theory (CLPT) is selected to
formulate the problem. Consider a thin plate of length a,
breadth b, and thickness h as shown in Fig. 2(a), subjected to
in—plane loads Ry, Ry and R,y as shown in Fig. 2(b). The in —
plane displacements u {(x,v.z) and v (x.v.z) can be
expressed in terms of the out of plane displacement w (., )
as shown below:

The displacements are: -
ulx,y,z) = u,(x,v) — o

dw 1
v,y 2) = v,(x,y) ~25 @
wix, v, z) =w,(x, y)

Where u,, 17, and w, are mid — plane displacements in the

direction of the x, ¥ and = axes respectively; = is the

perpendicular distance from mid — plane to the layer plane.
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Fig. 2 A plate showing dimensions and deformations
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Fig. 3 Geometry of an n-layered laminate
The plate shown in Fig. 2(a) is constructed of an arbitrary

number of orthotropic layers bonded together as in Fig. 3.
The strains are:
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du, w1 (B‘w]‘
T gx  Tax? +2 Ax
g1, gw l(ﬂw]‘ @)
=3y oy T 2\ay -
dv, du, , #w (ﬂu] (B'w]
Y= o * By = dxdy T gx 7 iy
The virtual strains:
d a* dw 3
be, = Eﬁuﬂ, za - &w -I—Eaﬁw
a . dhw
by :B—yﬁvp—zﬁﬂw+ﬂ—ya—yﬁw [ ;
IE-}r_ xﬁ'l}'c,-'-ﬂ_yaﬂn _Zaxﬂrﬂu.'
dw @ d 5 dhw
toaxay T J
The virtual strain energy:
6U = J‘ SeTodV (4)
-
But,
g=~Ce
Where,
C=cCylij=1.26)
& U =[ SeT € e dV (5)
-

If we neglect the in-plane displacements u, and 1, and
considering only the linear terms in the strain — displacement
equations, we write:
B..
fx?
a.:

e = —z 2y &w (&)

Ba.
dxdy

2

1. THE NUMERICAL METHOD

The finite element is used in this analysis as a numerical
method to predict the buckling loads and shape modes of
buckling of laminated rectangular plates [12] and [13]. In this
method of analysis, four — noded type of elements is chosen.

These elements are the four — noded bilinear rectangular

elements of a plate. Each element has three degrees of

freedom at each node. The degrees of freedom are the lateral

displacement (w), and the rotations (&) and (i) about the (X)

and (¥ axes respectively.

The finite element method is formulated by the energy

method. The numerical method can be summarized in the

following procedures:

1. The choice of the element and its shape functions.

2. Formulation of finite element model by the energy
approach to develop both element stiffness and
differential matrices.

3. Employment of the principles of non — dimensionality to
convert the element matrices to their non — dimensional
forms.

4. Assembly of both element stiffness and differential
matrices to obtain the corresponding global matrices.

5. Introduction of boundary conditions as required for the
plate edges.
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6. Suitable software can be used to solve the problem.
For an n noded element, and 3 degrees of freedom at
each node.
Now express w in terms of the shape functions N (given in
Appendix (B)) and noded displacements a*, equation (6) can
be written as:

Se = —zBSaf (7
Where,
r_ PN N8N,
~ | 8x® gy? dxdy
and
Naf=[w] i=1n

The stress — strain relation is:

g=C¢

Where £ are the material properties which could be written as
follows:

€11 Cyp Cyg
=10 Cp Ly
Cie Cz6 Cae

Where C;; are given in Appendix (A).
s = | (Boa") (Cz)Batay

i
Where V' denotes volume.

SU = §aT J‘ BETDBafdx dy = 6a°T K% a® (8)
V

Il 7 . . .
Where Dj; =EE=1J;_E_1CL-J-E‘ dZ is the bending stiffness,
and K* is the element stiffness matrix which could be written
as follows:
Kf = f ETDE dxdy (9

The virtual work done by external forces can be expressed as
follows: Refer to Fig. 4.
Denoting the nonlinear part of strain by &&'

W = J] SeTo'dli = J‘ ST N dxdy im
Where
NT =[N, N, N ] = [0, 0, 7] d2Z
a
Eﬁw 0 B
EEI a e
se'=6e|=| 0 —owl|l®* (11)
5 ay  ||9w
¥ 8 8 By
—bdw —fdw
Iy dx
N}’
N,y «
N, < > N,
> ny
Y ¥ ¥
N}'

Fig. 4 External forces acting on an element
Hence,
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W'TEJ. . Eﬁ. . Where,
(e | |ax W ay " *wr , an;y’ an
W = dw 0 i ; i 5 r:,r}l dxdy  (12) KD = J‘f fx [‘5 th] dx | o dy
a.}_, ﬂ}‘ W Bx W Xy ﬂ"ﬂ,.i'[ oy PI_'I. B;ﬂir[
dy dy

This can be written as:

-

© s the differential stiffness matrix known also as geometric

] 5 ! fw stiffness matrix, initial stress matrix, and initial load matrix.
—&w —_ )
Ax N, Nu1lax The total energy:
oW = H ] waj_ n.f; gw 4% dy (13) §U + SW =0 (17)
ﬂ_y Gw E Since &a® is an arbitrary displacement which is not zero, then
K°a® — KPa® =0 (18)
Now w = Naf Now let us compute the elements stiffness and the differential
aNT{" aN, matrices.
o eT dx N, Nr].' dr | . . -
oW = ba J] ﬂ [;WIJI- N}- ﬂ'N[ a® dx ﬂ’-_‘} I:l‘]:':] K = J‘f B'DE dx d_‘}
dy dy ratN; T [ 8°N;
i = -] o =—-N_.P. =-—N_ gx? dxl
Substitute & Verly VyF Vo E:Jf“v.ﬂ- Dyy Dyz Dy a‘fﬂﬂ-
AT £ = - Dy, D.. D, - ;
ﬂ . aIN; K J] 2y 12 o D‘E 2y dx dy
_ 5T dx X Xy ﬂ_r LTS 16 26 EE 2 07
§W = —6a H an, [ny B ] aN,|a° dxdy (15) 2: ::H 2.: ;ﬂ
gy ﬂ}r - oxOy- - gxoy-

Therefore, equation (15) could be written in the following
form:
W = —5aT kP a® (16)

The elements stiffness matrix can be expressed as follows: . . . . . i
= ﬂ‘ 1nir ﬂ“ J.hir' ﬂ“ J.hirl ﬂ‘ 1nlr_| ﬂ“ J.hirl ﬂ‘ 1nlr_| ﬂ‘ 1nlr|_ ﬂ‘ 1nir_| ﬂ‘ 1nlr|_ ﬂ‘ 1nir_| ﬂu 1nir|_ ﬂ‘ Ilir_l
Hl.- = J‘f 11 + Dl" - - - - ? "~ + " +D"" " "
Ax? ax? “hdy? dxt dx? gyt dxdy dx?  dx? dxdy = gyt gyl
a8 N; 8 N; 8% N; 8* NJ.-] 4D a2 Nl a2 N; dx dv (10
axdy dy? | ay? dxdy 5 axdy axay | °F 2 19

+ 2Dy

The elements differential stiffness matrix can be expressed as foIIows
5= |Faran t o 3y 9x T ax ay ) TV oy a xdy  (20)

The integrals in equations (19) and (20) are given in Appendix (C).
The shape local co — ordinate for a 4 — noded element is shown below in Fig. 5.
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Fig. 5 A four noded element with local and global co — ordinates

The shape functions for the 4 — noded element expressed in global co — ordinates (x.¥) are as follows:
w = Nywy + Nogpy + Naypy + Nywy + Nogpy + N
+N;wy + Nogpg + Ntz + Nygwy + Nyy by + Nygiy

Where,
B dw B &w
&= PP W=

}
The shape functions in local co — ordinates are as follows:
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z z e 2 z

Ny =gy +aprtaegstagr tosrs taes” +oapr® fagr s+ agrs
E E e
T005" + @1 775 + G 7S

Ni=ay +apr+as +agr’ +

z E o Z g d
Bis75 + s +aprt +aprts +oars

3
tajp5° +

E e
Biy3 75 + By 7S

The integrals of the shape functions in local co — ordinates are as follows:

LN, 8t N; 1
9= .H dr? r: drds =16 [a“ % + 307057 + 300 + ﬂ-[n”‘ju]
J]' IN; 8*N _|
ds?
J]' N #* N;
N ﬂ‘ i
44 = JI "

J] N ﬂ‘ N;
Br? drds

1
drds =16 [ﬂ'uaﬂ' s t3 3 Hiso + 3a5508j1p + 81120 _.1"]

dr ds = lﬁ[ﬂm%ﬁ + 070 + Bty p T By By g ]

dr ds = 15[51554 + gty T Gip Qe T Qo _.11]

dr ds = 8fay a;5 + 31 + 207055 + 8381

‘|‘ 3 izt l;-]
IN; 8° N; I 2
J‘f ﬂ*:l" drds=28 | GisCa + oo oy +ag g0 3 Bis g
tapza '4
T 8°N; 82N, - 2
JI P orés drds=28 | Gigtjs + @i @y +§ u.l-.;u._ig]
8% N; 8* N; I 2
= J‘f ﬂ“:'"ﬂ‘s 3ot = drds=8 | BisGje + 3 %% + ﬂ'inﬂ'jﬁ-]
8% N; 8* N; I 4
Grds ris drds =4 | Bis Bjs + asa + 3 OipQiz + Oi5012

9
+ 9199'_.9 +aatig Bty 2 5 Biy7 ﬂ_.:..]

J‘ j 8IN; 8 IN;

ta;;ap + a0 + a0,

drds =4 [u.l-: oz + g{Ea[: oy + 4o, + 300

T8ty Oty T Gy T O

3
Bi1y ﬂ-_i's:] + E (s i1z + Opglye + 0285 + Bz gy + 351115 11 F 811 B0

+ig4 Jn]‘l‘ Biy7 ﬂ'_.:..]

J‘ j a; BN

+3a; gy + 4y g + 3oy Oz + Gy + Gy +

drds =4 [aig oy + %{aig g + 05 Oz + Big Gz
4
3 fig g + Gipp g

1
+a54 ﬂjs:] + 5 (o5 iy + Qglip + 8ppq 85 + B g + B33 Oj1g + Bz Oy

i
+3a;; JL"] += 7 ﬂ'u.:. ﬂ'_.:.:.]

8N 1 R
gxt gx?
2N, | [P D Dull| a2,
S - o, .. D, - 7
K J] dy? 12 D“ D.s 3572 dx dy
gEN; | Ot TR TR g
2 2
L dxdy ] L Bxdy
The elements stiffness matrix can be expressed as follows: ) ) ) ) ) i
i [ 3N 8N, BN *N; @ N; 3N 8N; 8*N; 8*N; 8°N; 8% N; 8 N;
K = ﬂ Dy —— s T s z 7z | T2 z 2 0y ————
! dx? dx? “A\@yt dx*  gx* ay? dxfy dx*  dx? fxdy = gyt gy’
- &*N; 8*N; 8°N; a=r~.rj-) . BN; 8N v (10
T2 dxdy dy? ' 8y? dxdy 5 dxdy Ax a} y @9

The elements differential stiffness matrix can be expressed as follows;
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dxdy

anN; B'N (BNE 8N;  aN; B'NJ.-] 8N; dN; (20)

Kf = _H [ ¥
dx ﬂx dy dx dx dy gy dy
The integrals in equations (19) and (20) are given in Appendix (C).

The shape local co — ordinate for a 4 — noded element is shown below in Fig. 5.
5

F 3
(1.1} L1
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» T
v by {0,0)
2) R, {4)
(11 b -1

Fig. 5 A four noded element with local and global co — ordinates

The shape functions for the 4 — noded element expressed in global co — ordinates (x.¥) are as follows:
w = Nywy + Nogpy + Natpy + Nywy + Nogpy + Ny
+N;wy + Nopg + Notpg + Nygwyy + Nygpy + Nygiy
Where,
dw dw
®= fx ¥= gy
The shape functions in local co — ordinates are as follows:
Ny =gy +aprtagstagr +aosrs +aes”+ u.l-_—.:r'! +apr s+ agrs”
+ﬂ'[105! + 5[1.1""!5 + ap rs?

Nj. =aj + Qg + Bz s + ﬂ'_i':t""': + 85 7's + a._i-E,s: + aj-_—.*.r'! + u._i-E'.r':s + u._i-.;'rs:
+ﬂ'_i'1r_\5! + a._i-n*r!s + B33 rs?
The integrals of the shape functions in local co — ordinates are as follows:

H NB,J 1
97 )] ar? 3

3 e Qg + G134 ﬂ'_.n]
IN; 8°
=] %

w5
-] 5

drds—lﬁ[aua4+3al gy +3

N; 1
s drds =16 [ﬂlsﬂ' s T3 Gisljs + 301080 + Gipz0 _.1"]
2N, 22N "y

dr ds = 15['5’14'555 + 705 + Bty p + By ﬂ'jl:]

N ﬂ'N

dr ds = 15[51554 + Qi + Giyp i T G2 0 _.11.]

N ﬂ‘ N
J‘f 372 Brde drds—E[auu.E‘-l—auan-l—?'al g + 34817
‘|‘ 3 izt l;-]
g% N; 8* N; I 2
J‘f ﬂ*:r'ﬂ‘ Py drds=28 | Gis s + Zojp oy a0y t 3 Gis g
+ag. 8 J'4
8%N; 8* N; I 2
JI ds? dras drds=8 | BisGys T Gig i1y +§ E-[.;ﬂ-_i-g]
IN; 8° N; I 2
J‘f ords Bs? = drds=8 | BisGje + 3 %% + ﬂ'inﬂ'jﬁ-]
IN; 8 N; I
J‘f Grds ris drds =4 | Bis Bjs + asa + 3 OipQiz + Oi5012

9
+ ﬂ'wﬂ'_.l? +aa8ig 8ty T2 5 Biy7 ﬂ'_.:..]

J‘ j 8IN; 8 IN;

tai7 G + Bis s + Gigljy T QisQjyy T Gi7

drds = & [u.l-: oy + g{Ea[: oy + 4o, + 300
4

Qs + 3 Qip Qe + Oip &)y
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1
Bigq Gz ) + s (i 810 + Gi0ip + 8512685z + Fai78;7 + 38515 81y + 8311 842

1
+ai205,) +5 7 @iz ﬂ'_.l:]
aN; BN

1
drds = 4 [u[! gy + E{G[! G + G5 Gz T Big Gz
+3aiz 50 + 405055 + 30500057 + G582 T Bip Gy T 3% %s + Giyp Gin
1
+oi o)+ s (Big @iy + Gt + Giag Bjs + F0iap Bap + Bipg Oz + Biaz Bjay

1
+3a;8;7) 7 Qi1 ﬂju]

alN; BN 1
drds =4 [u.l-: gy T g{a[: tje + 2o 00z + 305705
4 1
t+3ai1850 + 205055 + 050z T 20148500 + 30785 + 3 3 Gzl + 3 %is0e
+2a;; 6 6]
8IN; 8 IN; 1
J‘j drds = & [u.l-! oy + g{Ea[! oy + 2a;50; + Q05

Qg Ojp + 7 85 85 + 3853087

4
1 3 3
+lagp ) + 5 (2a55 85 + 3a50a55 + 3aigay; + 2agy, ﬂ_{:t]]

The values of the integrals are converted from local co — ordinate (». 5) to global co — ordinates.
The integrals of the shape functions in global co — ordinates are as follows:

H *N; 8N; P =1-h}.] 4n*b

dx? dx dxdy = h2 4= ma® 1

H 8% N; 8* N; o 4&11) 4am®
y: oy =g )T e
ﬂ 3% N, 8° NJ oy 4 ] 4mn

B= gx? dy? xay= hohy Gz = ab 3

H 8% N; 82 N; a 4 ) 4mn
ay? ax2 Y T )% T e B

H 8*N; 8°N; y (4J 4m?

5 7)) 3t dady rar= h2 9 = g2 s
J‘f 1nir' ﬂ:ﬂir' d d ‘]:'

s = )} Gxay ax2 YT T AR

(2
J‘J‘ a ; B N_i- ird 4-] 4m*
7= gy? dxdy OV E\R) T T al 7

+ai 85 + 255055 + 3agp0;; + 2050, +

.?i

Ea

h
J‘f 1nlr' ﬂ: 1nir' d d ( ‘]:' ‘]ﬂ'n-:
= p Bray =117 19:= 7 de
Bxdy Byt hy b

H NN 4 ] 4mn
=7 ) Gxayavay Y T \nn, )T T O

oy oy
J‘J‘ aN; aN; iy d h}.) n

fip = 3 Bx xray = n, T amﬁ'm
aN; aN; hy am

1 :.Hﬂ_yﬂy dx dy = E QLLZHQLL

iz = _H Bx dy dx dy = qy;

Mz = J] E ax dx dy = g3
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In the previous equations h, = and hy =— Where a and & are the lengths of the plate along the x —and ¥ — axis respectively.

7 and m are the number of eIements in the x —and ¥ — directions respectively.
The elements of the stiffness matrix and the differential matrix can be written as follows:
Kij =Dyym + Dipny + 2Dy + Dygry + Dygmy + 2015 + 2Dye75 + 2Dgp75 + 4057

Hf.' =By + Ry (g +m2) + B
or in the non — dimensional form:

‘1"?‘1! b _ o _ o o _
K= m (E:I Diygq + 4mn (E) Dioqy +4n*Dyegs + dmn (E) D,.q;
++TW(§)5::¢?:+4'M‘ (h)‘ﬁ:5q9+ dnD,.qs + dm (Ez) D,sq+

Kﬁ =P, % (g] Gio T fxy gz + quz) + P, (;) Q11
where
_ 1

4= (E h.ﬂ] Dy. R (;m]
élso 1 h h -
w=Ghe 6= 7= Foere

The transformed stiffnesses are as follows:

i = Clye* + 262520, + 2C.) + Cop8?
Cip = 2520, + Cia + 4CL) + CL0e* +5%)

Cis = eslC] 0% + Coa5? — (€], + 2C e — =%]]
Cpp = Ciy5* + 20757 (0, + 20 ) + Capc®
Cop = eslC],5% — Cope? — (€15 + 2C; e — 57]]

Cop = (Cis + Ca2— 2C{5)c%s™ + Cle® — 570

Where
c! E:
Y vy,
Vqy E. ¥y E.
L, 3 Bt S 12 51

1-wpvy 11— vy

C;L-‘L = g3 . Cé,s, = Gj_! and Céﬁ = Gj_:

E, and E; are the elastic moduli in the direction of the fiber and the transverse directions respectively, = is the Poisson's ratio.

Gyg, Gyz, and Gyy are the shear moduli in the x — ¥ plane, ¥ — =z plane, and x — z plane respectively, and the subscripts 1 and 2
refer to the direction of fiber and the transverse direction respectively.

aN; BN 1
drds = 4 [m[: gy + g{m[: gig + 2o 05 + 370
4 1
t+3ai1850 + 205055 + 050z T 20148500 + 30785 + 3 3 Gzl + 3 %is0e

+2a;, 0; 5]

8N; dN; 1
J‘j drds = & [u.l-! oy + g{Ea[! oy + 2a;50; + Q05
1

05 + 2055055 + 30500 + 20550, + 5 00 T 288 + 305,50,

3 3

1
+lagp ) + 5 (2a55 85 + 3a50a55 + 3aigay; + 2agy, ﬂ_{:t]]
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The values of the integrals are converted from local co — ordinate (+. 5) to global co — ordinates.
The integrals of the shape functions in global co — ordinates are as follows:

J]' ﬂ“N ﬂ‘N P ‘l'h ) dnh
Ax? gxl dxdy = R L
J‘J‘ B’ N; g2 N P ‘l-h_r] dgm?
a} Iﬂ'_‘} dx ¥= ; gz = 1n ke L
J]' ﬂ“N 8- N v 4
ax? 3yt =y

ﬂ 2NN 4 ] 4mn
BT ey e Y T g n, ) T T B

.“;3

..:g

¥

J‘J‘ a*N; a* N; v d (4) 4n-
5 7)) aar ﬂxﬂ} e hi s = g2 s

J]'B‘NBNJEE P (4-] 4n?
i dxdy dx? rey= h2 e = gz s

H 8% N; 8° N, » +J 4m?
= 8yt ﬂ'.rﬂ'} y= h ="

ﬂ PN PN (4) dm?
e = 2 ¥=1l77 /9% = 7 G

Bxdy dy? hi b

H N BN 4 ) 4mn
%= ) sxayaray P T\ )T

y x
J‘f aN; ﬂ'Nj- e d h}.] m
fip = ar dx Loy = hy Gip = gmﬁ'm
ﬂ‘Nl Iﬂ‘NJ h‘l’ am
1 = _H E dy dxdy = E f11 = b f11

aN; ﬂ'Nj-
Tz = J‘f dr ay dx dy = gyz

aN; B'N_i-
Tz = JI dy ax dx dy = g2

In the previous equations h, = E and hy, = % where & and & are the lengths of the plate along the x —and ¥ — axis respectively.
n and m are the number of elements in the x — and ¥ — directions respectively.

The elements of the stiffness matrix and the differential matrix can be written as follows:
Kij =Dyym + Dipny + 2Dy + Dygry + Dygmy + 2015 + 2Dy575 + 20575 + 4057

K} =B + Bylny +mp) + By

or in the non — dimensional form:

an? sby _ an _ L as
Ky = m (E:I Diyqy +4mn {E) Doag, +4n°Dyoq, + dmn {E) D,-qs
+4ﬂ1{§] Dargs + 4m? (2) Dogqe+ 4n7Dieqs +4m (=) Dieqr
8y _
+4mn (E) 6609
KF = *E_Pr % (g) Fip Xy ':l?j_- + qlg:l + P (E) G114
where
1 _ a
g _(E h.") By. R (Elh"JP
Also
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o= (e

The transformed stiffnesses are as follows:

¢ = (E]tﬁu ¥ = G]u:, b=bfa

o

Co = Che* + 26520, + 2010 + Cop5t
Cip = 2520, + Cia + 4CL) + CL0e* +5%)

Cip = eslClic® + Cops? = (0], + 20, — =7]]
Cop = Clys* + 268520, + 200 ) + Copc?
Cop = e5[C) 5% — Cope? — (01 + 20, (e — 5%]]

Cop = (Cfs + Ca2— 2C{5)c%s® + C(c® — 570
Where

Cl=—t
1= -
1—wyvy
cr= vy By v Ey
L:_ 3 3 - a a
1-wypvy  1—- vy
Cip = -

and Cip = Gyg

E, and E; are the elastic moduli in the direction of the fiber and the transverse directions respectively, = is the Poisson's ratio.

Gyq, Gyz, and Gyy are the shear moduli in the x — ¥ plane, ¥ — = plane, and x — z plane respectively, and the subscripts 1 and 2
refer to the direction of fiber and the transverse direction respectively.

IV. EFFECT OF BOUNDARY CONDITIONS

The type of boundary support is an important factor in
determining the buckling loads of a plate along with other
factors such as aspect ratio, modulus ratio, ... etc.

Three sets of boundary conditions, namely simply — simply
supported (SS), clamped — clamped (CC), and clamped —
simply supported (CS) were considered in this study.

The variations of buckling load, P with the mode number for
thin (a/h = 20) symmetrically loaded laminated cross — ply
(0/90/90/0) plate with modulus ratio (E,/E; = 3) were
computed and the results are given in Table 1 and Figure 6.
It is observed that, for all cases the buckling load increases
with the mode number but at different rates depending on
whether the plate is simply supported, clamped or clamped —
simply supported. The buckling load is a minimum when the
plate is simply supported and a maximum when the plate is
clamped. Because of the rigidity of clamped boundary
condition, the buckling load is higher than in simply
supported boundary condition. It is also observed that as the
mode number increases, the plate needs additional support.

Table 1 The first five non — dimensional buckling loads
P = Pa®/E, h* of symmetric (0/90/90/0) square laminated
plates with a/h = 20, and E, /E; = 3

Mode Boundary Conditions

Number | ss CcC CS

1 0.6972 2.1994 1.8225
2 1.2552 2.5842 2.0097
3 2.4284 4.1609 2.7116
4 2.6907 47431 4.3034
5 2.7346 5.0168 4.4536

454 [_a—s53 /
—eo—CC »

Cs

—n

/

>

T
3 4 5

./
154
1.0 /
T T
1 2
Mode Number

Fig. 6 Effect of boundary conditions

Buckling Loads

V. CONCLUSIONS

The buckling load is a minimum when the plate is simply
supported and a maximum when the plate is clamped.
Because of the rigidity of clamped boundary condition, the
buckling load is higher than in simply supported boundary
condition. It is also observed that as the mode number
increases, the plate needs additional support.
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