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Abstract— In a modern machining system, tool wear 

monitoring systems are needed to get higher quality 

production. In precision machining processes especially 

surface quality of the manufactured part can be related to tool 

wear. This increases industrial interest for in-process tool 

wear monitoring systems. For modern unmanned 

manufacturing process, an integrated system composed of 

sensors, signal processing interface and intelligent decision 

making model are required. In this study, regression analysis 

and fuzzy logic method use the relationship between flank 

wear and the resultant cutting power to estimate tool wear. A 

series of experiments were conducted to determine the 

relationship between flank wear and cutting power as well as 

cutting parameters. Speed, feed, depth of cutting and cutting 

power were used as input parameters and flank wear width 

and tool state were output parameters.  The network model of 

tool wear is established, so the inherent relation of tool wear 

and cutting power was reflected indirectly. It is used to cutting 

parameters to adjust the network part parameters in real-time 

so that the model has dynamic, real-time and fuzziness. In 

variable cutting conditions, the result indicated that the tool 

wear are more sensitive to cutting feed power. Because the 

processing situation and other factors are of different 

sensitivity to the model of spindle power and feed power , the 

further applied the tool wear method, to eliminate the false 

deduction and the false alarm lied in the single signal , the 

proposed fusion pattern is better than the single factor cutting 

power recognition of tool wear in full detection recognition 

effect. According to the proposed method, the static and 

dynamic power components could provide the effective means 

to detect milling tool wear estimation for varying cutting 

conditions in milling operation. 

 

Index Terms— End-milling, Cutting power, Regression 

analysis, Wear model, Wear estimation 

 

I. INTRODUCTION 

  Metal-cutting tool wear directly affects the precision, 

efficiency and cost-effective of machining, so the on-line 

monitoring tool wear is becoming more and more people's 

attention, and becomes an important research topic of flexible 

manufacturing system (FMS). In the past 20 years there had 

been great achievement on the research of monitoring tool 

breakage, especially, on the occurrence, development and 
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evolvement of the tool breakage, and some significant 

conclusions were also drawn. But the tool wear monitoring is 

being researched at present. Some methods are applied to the 

special aspect; others are in the testing phase[1-5]. Compared 

with other machining, the milling tool wear mechanism is 

more complicated and the accurate model of the milling tool 

wear can not set up at all because there are many factors that 

affect the milling tool wear and these factors are influenced 

each other. Because the wear is in the complex cutting 

process, the data processed for collecting the wear state are 

very huge, and the wear signal mixed with the noise is very 

difficult to be separated. In addition, in milling process, the 

tool wear is affected by the various parameters, so that the 

cutting test and data are uncertain and unrepeatable. There are 

two techniques for tool wear sensing: direct and indirect. The 

direct technique includes measuring the actual wear, using 

radioactive analyses of the chip. Generally direct 

measurements are avoided because of difficulty of online 

measurements. For indirect methods of tool wear monitoring, 

the following steps are followed: use of single or multiple 

sensors [6] to capture process information; use of signal 

processing methods to extract features from the sensor 

information; use of decision-making strategy to utilize 

extracted featured for prediction of tool failure. Indirect 

technique includes the measuring of cutting forces, torque, 

vibration, acoustic emission (stress wave energy), sound, 

temperature variation of the cutting tool, power or current 

consumption of spindle or feed motors and roughness of the 

machined surface [7-14]. No matter what kind of sensor is 

adopted, a successful monitoring system must try to find tool 

wear features which are not only relevant to the development 

of tool wear are but also independent of changes in cutting 

conditions. The strategies for wear feature extraction in 

developed monitoring systems may be summarized in two 

categories based on the techniques for signal processing and 

analysis. The non-parameter method uses time-domain 

features (e.g., mean value, variance, correlation and change 

rate) and frequency-domain features (e.g., power spectrum 

and inverse spectrum). A pattern recognition method is used 

to identify tool wear based on various features. However, 

since the process of feature extraction does not consider the 

cutting conditions, monitoring systems based on the 

nonparametric method are less reliable in FMS than 

parametric method. The parametric method uses an empirical 

model to describe the quantitative relationship between 

cutting state signals (e.g., force, power, acoustic emission, 

vibrations and temperature), cutting conditions and tool wear. 

The parametric method includes two stages. In stage one; an 

empirical model is developed by regression analysis of 

experimental data [15-17]. In stage two, tool wear is 

estimated in real-time by using the empirical model and 

measurements of the cutting state signal and conditions. The 
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advantage of the parametric method is that cutting conditions 

are used as a model input so that wear estimation is 

independent of variation in cutting condition. However, since 

there are stochastic variations in workpiece materials, 

machine vibrations and temperature as well as different types 

of tool wear (such as crater wear, flank wear, tool point wear, 

etc.). In actual machining, the empirical model still has large 

errors in the estimated tool wear or mistakes in recognition 

[18].  

The work presented here is evolutionary in that it follows 

and expands on the work done in intelligent tool condition 

monitoring as noted above. However, the contribution of the 

present work is that the resulting framework, at least in 

principle, offers a robust representation of the process in the 

event of changes in the machining environment. Optimization 

objective of many earlier model based on fuzzy logic for tool 

wear monitoring and prediction works is mean square error 

between actual output and model output. It also shows that it 

is possible to reduce mean square error of the forecast tool 

wear and actual tool wear to obtain the best prediction model 

by adjusting the parameters properly. However, we can get a 

better model result by setting up a more optimized goal. For 

example, with the prediction accuracy as the maximum 

objective function, the best prediction model is obtained by 

adjusting the parameters, then out of sample extension is also 

considered and combined with fault detection algorithm, 

which can reduce computation task obviously and improve 

real time capability of the algorithm. 

The organization of the paper is as follows. We first state 

the problem in a rather succinct manner. Next we discuss the 

methodology used to develop the established model of tool 

wear in two steps: We will first discuss the cutting power 

model based the regression analysis that is used to correlate 

the rather set of data obtained from machining tests. We will 

subsequently discuss the manner in which this  network based 

model is used to adaptively construct a fuzzy logic based tool 

wear monitoring algorithm, which as mentioned above offers 

the relative transparency that the network based model lacks. 

We will next discuss the another data set is used to evaluate 

the network model and finally conclude the paper with an 

assessment of the proposed approach and some suggestions 

concerning future work in this area. 

 

II. NETWORK  MODEL OF TOOL WEAR 

2.1 Regression Model 

In the milling process, the cutting power P  has close 

relations with the cutting speed v , the feed speed f , the 

cutting depth pa and tool wear VB . At the same time, the 

cutting power changes with the different conditions such as 

the workpiece material, the tool material and so on.  

According to the metal cutting theory, the spindle cutting 

power sP and the feed power fP  are defined as follows  

        432
1

a
p

aa
s afvaP                （1） 432

1
b
p

bb
f afvbP                 

（2） 

Where 1a and 1b  are the coefficient decided by the cutting 

tool geometry dimension and performance of the material. 

432 ,, aaa and 432 ,, bbb  are the cutting-parameter exponent. 

As Equation.(1) and Equation.(2) shows, cutting tool is 

used when the certain cutting condition and tool wear state, a 

corresponding power value can be output. For the 

convenience of calculation, which applies logarithm to the 

evaluation, the result is as follows   

ps aafavaaP lnlnlnlnln 4321     （ 3 ）

pf abfbvbbP lnlnlnlnln 4321     （4） 

In the actual milling process, the cutting power is 

constantly changing, it is difficult for us to accurately model 

the power. For this purpose, the fuzzy classification is 

introduced to describe its change. Supposed there are l fuzzy 

rules, that is, l  values are output according to regression 

model, correspondingly, there are l sets different equations as 

follows 

If S=lnPs , then 

piiiii aafavaaS lnlnln 4321    （ li ,,2,1  ）                

（5） 

If fPF ln ,then 

piiiii abfbvbbF lnlnln 4321     

（ li ,,2,1  ）                （6） 

These coefficients in Equation.(5) and Equation.(6) are 

obtained from linear regression of experiment data. We first 

discuss coefficients in Equation.(5). The sample size is 

divided l  according to the rank of the cutting tool wear. 

Supposed sample size is confirmed as n , sample size of class 

i is equal to in ( li  ), Equation.(5) can be as follows 

14
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Where l sets coefficients matrix is fitted by the least 

square method, that is 
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2.2 The Fuzzy Classification 

The cutting tool wear is generally divided into three stages, 

that is, initial wear stage, normal wear stage and acute wear 

stage, each of which is the feature of overlapping and 

fuzziness. According to the wear three stages , the tool wear 

states are separated as 8 groups or A,B,C,D,E,F,G and H, 

each of which is corresponding to a certain spindle cutting 

power. In the light of different tool wear range and 

Equation.(5) ,the functional relation between the wear value 
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and the spindle cutting power and the cutting parameters is as 

follows 

paafavaaPS lnlnlnln 1413121111   

VB<0.1mm 

paafavaaPS lnlnlnln 2423222122   

0.05mm<VB<0.15mm  

paafavaaPS lnlnlnln 3433323133        

0.10mm<VB<0.20mm     

paafavaaPS lnlnlnln 4443424144      

0.15mm<VB<0.25mm 

paafavaaPS lnlnlnln 5453525155       

0.20mm<VB<0.30mm    

paafavaaPS lnlnlnln 6463626166      

0.25mm<VB<0.35mm   

paafavaaPS lnlnlnln 7473727177       

0.30mm<VB<0.40mm   

paafavaaPS lnlnlnln 8483828188      

0.35mm<VB  

2.3 The Membership Grade Function 

The function of the membership grade on wear state is set 

up according to fuzzy classification of the tool wear, as Fig.(1) 

shows. 

2.4 The Network Model on Tool Wear 

After the coefficient matrix of Equation.(7) being obtained 

through regressive analysis of the experimental data, if the 

spindle cutting speed v , feed speed f and the cutting depth 

pa is known, 81 ~ SS is calculated directly through 

Equation.(5), then 81 ~ PP is calculated by using inverse 

operation. In monitoring tool wear, 81 ~ PP  is taken as the 

center of the fuzzy clustering in Figure.1. Compared the 

actual cutting power value with clustering center, the current 

tool wear membership grade can be determined, thus tool 

wear can be identified accurately. The membership grade is 

calculated as follows  

1

1
1










jj

j

PP

PP
μ                  （8） 

Where P  is the actual value, jP and 1jP is the estimation 

value. The net model to recognize the tool wear is shown in 

Fig.(2). For the coefficient determination of feed power in 

Equation.(6), methods can be taken with same determination 

of spindle power coefficient, here are not repeated. 

III. EXPERIMENTAL STUDY 

3.1  Experimental Design 

The objective of the design of experiments is to provide an 

efficient means of experimentation and analysis of results. 

The experiments are carried out on a CNC machining center 

of XKA714 using the strategy described above. The milling 

experimental condition is shown in Table 1. The cutting 

parameters are in Table. 2. Cutting experiment is used in 

Taguchi based orthogonal array experimental design, 

respectively, according to the first, second and third group of 

cutting parameters in Table 2. Taguchi’s orthogonal array 

structure offers robust experimental design with decreased 

experiment number. Taguchi method involves analysis 

between the factors, their interactions and responses. The 

method is widely used in engineering applications. Taguchi’s 

orthogonal array structure was used for experimental design, 

as reduced number of experiments can be acceptable for 

industry. A standard Taguchi orthogonal array was chosen for 

the most controlled factors such as, cutting speed, feed speed 

and cutting depth . Take the turn from little to more to cut 

according to the tool wear rank. In different wear 

stage(0.05mm,0.1mm,0.15mm,0.2mm,0.25mm,0.3mm,0.35

mm,0.4mm), the power value is collected about every set 

different cutting conditions separately and every value is the 

average of 640 sets data. Milling tool wear monitoring system 

is set up as Fig.(3) 

 
 

 

1 
A       B      C       D      E      F      G      H 
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Fig.(1). The Function of the Membership Grade on Wear 
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Fig.(2).The Net Model of Tool Wear 
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Table 1.Cutting Experiment Condition 

Cutting  tool 

Material 
High-speed 

steel 

Type 
End milling 

cutter 

Diameter(mm) 14 to 20 

Equipment XKA714 

Milling method Climb milling 

Workspace 

material 
Thermal refining 45 steel 

Cutting 

speed/(m/min) 
8.792 to 21.98 

Feed 

speed/(mm/min) 
20 to 35 

Cutting 

depth/mm 
2 to 5 

Cutting fluid Motor-oil 

 

Table 2.Cutting Parameters 

Group 

number 
Cutting parameters 

1 
v=8.792, 13.19, 17.584, 21.98; 

f=20,25,30,35; ap=2,3,4,5 

2 
v=9.671, 11.43, 15.38,17.584; 

f=20,25,30,35; ap=2.5,3.5,4.5,5.5 

3 
v=11.43, 17.584,19.36, 21.98; 

f=20,25,30,35; ap=2,3,4,5 
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Fig.(3).  The Monitoring System. 

 

3.2  Data Acquisition 

The first types of signals are spindle motor currents 

measured by hall current sensor  AKH-0.66 control unit 

installed on machining center. The second types of signals are 

feed drive nominal currents measured by Heidenhain TNC 

426 CA control unit installed on vertical machining center. 

Although the machine has got three controlled feed axis, only 

the measurements of working table feed drive nominal 

currents (Ix, and Iy) were enabled by control unit. After the 

electric current generated between working electrode and 

reference electrode is transformed, filtered and amplified, it is 

transfered to the converter of STC-2 for A/D conversion. The 

signals were sampled every 0.6 [ms]. The flank wear was 

measured on a tool maker's microscope. As it is shown in 

Fig.(4) and Fig.(5), every curve is obtained in the same 

combination cutting condition. The coefficient in 

Equation.(7) and the correlation coefficient R  obtained 

through the regression analysis is shown in Table 3.  

 

 

 

It is shown in the Table 3 by the correlation coefficient that 

the model reflects the relation between the cutting power and 

the cutting parameters.Based on determining the coefficient 

of above training sample, adopting the new measured data in 

the different cutting condition, whether the net model of the 

tool wear is suitable for the recognizing the tool wear on line 

can be testified. In each of the cutting conditions,  

measurement data is draw randomly. An example for 12 

sample sets was given in Table 4.The measurement results of 

the spindle power and feed power model can be found in 

Table 5 and Table 6 . In order to analyze intuitively the 

examination effect to the spindle cutting power and feed 

cutting power as shown in Table 5 and Table 6, the 

examination effect is shown in Fig.(6) 
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Fig.(4). The Training Sample of Spindle Power 
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Fig.(5). The Training Sample of Feed Power 

 

Table 3.The Model Coefficient and Correlated Coefficients 
No 

ia  ia  ia  ia  2R  1ib  2ib  3ib  4ib  2R  

1 5.8310 0.1705 0.1602 0.0680 0.9593 4.4006 0.1462 0.1061 0.0626 0.9915 

2 5.7739 0.1929 0.1815 0.0387 0.9550 4.2931 0.1688 0.1213 0.0850 0.9912 

3 5.9394 0.1094 0.2071 0.0229 0.9727 4.3657 0.2061 0.0764 0.0910 0.9946 

4 6.3406 0.0327 0.1651 0.0539 0.8482 4.3375 0.2120 0.0852 0.0924 0.9910 

5 6.2498 0.1086 0.1481 0.0514 0.9547 4.2522 0.2212 0.1078 0.1086 0.9933 

6 6.1584 0.1196 0.1688 0.0591 0.9721 4.3782 0.1165 0.1599 0.0891 0.9851 

7 6.1456 0.1510 0.1543 0.0628 0.9668 4.4156 0.0738 0.1914 0.0745 0.9582 

8 6.1073 0.1900 0.1387 0.0711 0.9720 4.3347 0.0751 0.2240 0.0785 0.9856 
 

Table 4.An Example for 12 Sample Sets 

No 

Cutting 

speed 

(m/min) 

Feed  speed 

(mm/min) 

Cutting 

depth(mm) 

Wear value 

(mm) 

Spindle power(w) Feed power（w） 

Estimation 

value 

Actual 

value 

Estimation 

value 

Actual 

value 

1 8.792 20 2 0.04 836 830 161 155 

2 8.792 25 3 0.182 1099 1042 177 176 

3 13.19 30 4 0.085 1035 1010 192 190 

4 13.19 35 5 0.125 1091 1083 203 202 

5 17.584 20 4.5 0.355 1255 1256 203 204 

6 17.584 30 3 0.362 1342 1352 222 217 

7 17.584 30 4 0.118 1094 1090 202 204 

8 21.98 25 3 0.062 1041 1052 193 195 

9 21.98 35 3 0.291 1330 1320 223 224 

10 21.98 30 5 0.290 1336 1325 227 230 

11 8.792 35 5 0.370 1241 1250 216 222 

12 8.792 30 4 0.082 962 956 181 179 
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Table 5. Measurement Results of Spindle Power Model 

Number 
Actual 

value/mm 

Membership grade Estimation 

value/mm 

Absolute 

error μ0.05     μ 0.1 μ0.15 μ0.2 μ0.25 μ0.3 μ0.35   μ0.4 

1 0.04 0.70 0.30 0 0 0 0 0 0 0.065 0.025 

2 0.182 0 0 0 0.84 0.16 0 0 0 0.208 0.026 

3 0.085 0.80 0.20 0 0 0 0 0 0 0.060 0.025 

4 0.125 0 0.02 0.98 0 0 0 0 0 0.149 0.024 

5 0.355 0 0 0 0 0 0.44 0.56 0 0.328 0027 

6 0.362 0 0 0 0 0 0.28 0.72 0 0.336 0.026 

7 0.118 0 0.08 0.92 0 0 0 0 0 0.146 0.028 

8 0.062 0.26 0.74 0 0 0 0 0 0 0.087 0.025 

9 0.291 0 0 0 0 0.74 0.26 0 0 0.263 0.028 

10 0.290 0 0 0 0 0.66 0.34 0 0 0.267 0.023 

11 0.370 0 0 0 0 0 0 0.10 0.90 0.395 0.025 

12 0.082 0.92 0.08 0 0 0 0 0 0 0.054 0.028 

 

Table 6.Measurement Results of Feed Power Model 

Number 
Actual value 

/mm 

Membership grade Estimation value 

/mm 
Absolute error 

μ0.05    μ 0.1 μ0.15 μ0.2 μ0.25 μ0.3 μ0.35   μ0.4 

1 0.04 0.80 0.20 0 0 0 0 0 0 0.06 0.02 

2 0.182 0 0 0 0.90 0.10 0 0 0 0.205 0.023 

3 0.085 0 0.86 0.14 0 0 0 0 0 0.107 0.022 

4 0.125 0 0.98 0.02 0 0 0 0 0 0.101 0.024 

5 0.355 0 0 0 0 0 0.34 0.66 0 0.333 0022 

6 0.362 0 0 0 0 0 0 0.29 0.71 0.385 0.023 

7 0.118 0 0.14 0.86 0 0 0 0 0 0.143 0.025 

8 0.062 1 0 0 0 0 0 0 0 0.038 0.024 

9 0.291 0 0 0 0 0.70 0.30 0 0 0.265 0.026 

10 0.290 0 0 0 0 0 0.73 0.27 0 0.314 0.024 

11 0.370 0 0 0 0 0 0 0.08 0.92 0.396 0.026 

12 0.082 0.82 0.18 0 0 0 0 0 0 0.059 0.023 
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Fig.(6).  Cutting Power Test Results for Group 1 

 

The tool wear experiment found that the max absolute 

difference between the estimation wear value and the actual 

wear value about the spindle cutting power and feed cutting 

power is 0.028 mm and 0.025 mm respectively and the 

average error is equal to 0.026 mm and 0.023 mm 

respectively. Therefore, the factor that feed power affects the 

cutting tool wear is more than other factors. Namely, 

recognizing tool wear is much more effective on the basis of 

feed power. It is shown that the measurement error of cutting 

tools caused by greater tool wear is obvious as far as 

whole-process of monitoring tool wear. The  reasons of these 

uncertainties may be  that the cutting force is larger with tool 

wear increasing  normally, the condition of contact between  

 

the tool and workpiece  is worsened, these can cause tool 

edge bluntness, increase of  friction , deformation stress and 

cutting temperature, leading to larger measurement error. 

3.3 On-line Recognition Effect for Non-modeling Sample 

In order to test whether the tool wear network model of 

cutting power model coefficient by modeling sample is 

suitable fo other online recognition of cutting conditions on 

tool wear, choose the second group, third groups of cutting 

parameters, the random measurement data of each cutting 

conditions is obtained. Fig.(7) and Fig.(8) is test results of 

second group and third groups of cutting parameters 

respectively. 
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Fig.(7).  Cutting Power Test Results for Group 2 
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Fig.(8).  Cutting Power Test Results for Group 3. 

 

As far as second groups of cutting parameters, the tool wear 

experiment found that the max absolute difference between 

the estimation wear value and the actual wear value about the 

spindle cutting power and feed cutting power is 0.036 mm and 

0.032 mm respectively and the average error is equal to 0.035 

mm and 0.031 mm respectively. As far as third groups of 

cutting parameters, the max absolute difference between the 

estimation wear value and the measured wear value about the 

spindle cutting power and feed cutting power is 0.035 mm and 

0.033 mm respectively and the average error is equal to 0.034 

mm and 0.032 mm respectively. From test results of the first 

group of cutting parameters and other two groups, general 

trend of the max absolute difference and the average error 

have been increased significantly, feed cutting power tool 

wear recognition is superior to spindle power, which also 

shows that the two in the tool wear recognition put up some 

differences or sensitivity. 

3.4 Fusion Pattern of The Cutting Tool Wear Recognition 

For overcoming some disadvantages of measurement error 

by single factor analysis of power on-line recognition was  

 

used for fusion pattern . Fusion pattern in two power ways 

carry out combination.  

fs kk  21                  （9） 

Where  is comprehensive membership grade, 

sμ and fμ is membership grade of spindle power and feed 

power model respectively. Comprehensive membership grade 

with different properties can be made up according to 1k 、

2k different structure, for example, when structure 

is )+(5.0= fs μμμ , fs μμμ 6.0+4.0= , fs μμμ 4.0+6.0= . 

It is concluded that the monitoring wear error in which fusion 

pattern is used to fs μμμ 6.0+4.0= is minimum, this is 

because that feed cutting power is more sensitive than the 

spindle cutting power in tool wear recognition. Table.7 is 

error comparison about measurement error in 

fs μμμ 6.0+4.0=  fusion pattern and before fusion in the 

previous three groups of cutting parameters. 
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IV. CONCLUSIONS 

 

In this paper, using the regression analysis and fuzzy logic 

to establish the mathematical model between the milling 

cutting parameter and cutting power, and then tool wear 

model of spindle and feed power is presented. Theoretical 

analysis and experimental tests show that the cutting power is 

closely related to the tool wear. The main work and 

conclusions are as follows. 

1) Establish the mathematical model between milling 

cutting parameter and power in cutting process, and applies it 

to the analysis and measurement of tool wear in milling. 

2) The network model of tool wear of cutting power is 

established. It is used to cutting parameters to adjust the 

network part parameters in real-time so that the model has 

dynamic, real-time and fuzziness. In variable cutting 

conditions, the proposed fusion model is better than the single 

factor cutting power recognition of tool wear full detection 

recognition effect. At the same time, the results also reflect the 

spindle power and the feed power difference in sensitivity. 

3) It is show that the cutting power model formed by the 

fixed model coefficient can be recognition large error and low 

precision in the cutting conditions change fast , its application 

can be limited. 
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