

International Journal of Engineering and Advanced Research Technology (IJEART)

 ISSN: 2454-9290, Volume-4, Issue-5, May 2018

 6 www.ijeart.com



Abstract— The AHB Bus matrix is enables the parallel access

to shared slaves by multiple masters. The routing of the

transfers from masters to the slaves is based on the arbitration

scheme. Bus matrix enables the multiple AHB masters to

connect to the multiple AHB slaves. Bus matrix will decode the

transfer control signals, routes the transfer from master to the

corresponding slave and response back from slave to the master

with valid ready handshake which obey the AMBA AHB

protocol specification. The design is verified with verification

environment developed with the UVM methodology, which

enables the more flexibility and greater control with the

reusability.

Index Terms— Parallel Access, Shared Slave, Arbitration,

AMBA, UVM, Reusability

I. INTRODUCTION

 In a chip there will be many masters and slaves, there

will be more probability of accessing the same slave by

multiple masters. In order for secure and safe operations, one

must take care of providing access grant to single master at a

time. Bus Matrix is the module which acts as arbiter in

between masters and slaves, it make sure the single master

accessing the slave at any point of time, also it enables parallel

access between the different masters and slave.

Functional verification is usually one of the most

challenging areas in chip design. It aims to verify that a

specific model implements the specification correctly. To

implement the specification the design team interprets

sentences and paragraphs describing functionality into RTL

code. Since both the process is manual and the specification

inevitably leaves room for interpretation, there are numerous

areas for RTL designers to make mistakes. Functional

verification checks the correctness of design.

Verification is performed by generating the random

stimulus, driving the stimulus to design and observing the

DUT behavior for the driven stimulus. Verification is

measured based on Code coverage and Functional coverage

numbers. This method is referred as simulation method.

There are many languages and methodologies for writing

the verification Testbench. SystemVerilog for verification is

the language and UVM Verification methodology is adopted

for the verification environment development.

II. FUNCTUIONAL VERIFICTION

A. AHB Bus Matrix Design

AHB Bus Matrix is the top level component which

connects the Input node, Decoder and arbitration node, and

Output node.

AHB Bus Matrix design supports the following features:

 Architecture type AHB-2

 slave ports used for making connection to masters,

 master ports used for making connection to slaves,

 32 bits wide of address bus and data bus,

 Arbiter type 'fixed',

 Connectivity mapping: S0, S1 --> M0,M1, M2.

Fig 1: AHB Bus Matrix Design Block Diagram

Above block diagram shows the two slave ports, to

communicate with the masters and three master ports, to

communicate with the slaves. Also internal blocks are shown.

Below is the pin diagram of the design with the input and

output ports are shown.

Fig 2: AHB Bus Matrix Pin Diagram

Functional Verification of AHB Bus Matrix with

UVM Methodology

Praveena H U, Santhosh N S, Amaresha S K

Functional Verification of AHB Bus Matrix with UVM Methodology

 7 www.ijeart.com

B. Verification environment development

Verification environment is developed to drive the random

input stimulus to the design and observe the design behavior,

on driving the particular input expected design behavior is as

not expected then the error reporting will be done. Also data

integrality check is done for error free data handling. Steps

involved and components of verification environment are

explained in detail with the help of block diagram.

1) Top Level environment Overview:

The top-level environment has AHB Bus Matrix as DUT

for verification. On one side, the Bus Matrix will act as slave

to master, hence, the Bus Matrix should respond to master as

slave. On the other side, the Bus Matrix will act as master to

slave, hence, the Bus Matrix should respond to slave as

master.

Fig 3: TestBench Top Block diagram

Below are the building blocks of verification environment:

 AHB Master agent and AHB Slave agent

 Scoreboard and Checker

 Coverage Model

 Environment

 Testbench top

2) AHB Master and Slave Agent:

Fig 4: AHB Master Agent

As captured in the above block diagram, Master agent

components are;

 Sequence item - consists of control and data variables

declared in it with the constraints, these are used to generate

the input stimulus to the design.

 Sequences - There are different sequences which are

implemented to generate the particular stimulus pattern to

drive to design;

 Sequencer - Sequencer provides the sequences to the driver

 Driver - Receives the generated input stimulus from the

driver and drives to the Design. The driving of the signals is

in accordance with the protocol.

 Monitor - Monitor samples the interface signals and

converts the signal level activity into transaction level and

send it to the scoreboard.

Fig 5: AHB Slave Agent

Captures the address and control information signals by

sampling the interfaces signal, Based on address and control

information valid data will be stored to slave memory or

driven from slave memory to the bus for WRITE and READ

transfers respectively.

3) Scoreboard and Checkers:

Fig 6: Scoreboard

Scoreboard will receive the transaction packets from the

monitors. On receiving the packet scoreboard will decode the

packet,

If the packet type is WRITE then the write data will be

stored into internal memory. If the packet type is READ, then

the read data will be compared with the golden data present in

the local memory, if there is any mismatch in the READ data

with the data written then the ERROR message will be

asserted.

Checker will monitor’s the signals and checks is there any

violation in driving the signal with respect to protocol

specification. SystemVerilog assertions are used to write the

checker.

In case any protocol violation, the error message will be

asserted with the description about the failure. Description

helps the easy debugging.

International Journal of Engineering and Advanced Research Technology (IJEART)

 ISSN: 2454-9290, Volume-4, Issue-5, May 2018

 8 www.ijeart.com

4) Coverage Model:

Coverage model has the list of functional cover points to be

covered in order to ensure that all the functional specification

of design is tested.

Sl.

No

Cover Point Description

1 Burst type Covers the different burst types,

example: INCR, SINGLE, WRAP etc

2 Size type Indicates the beat size, it covers

BYTE, HALFWORD, WORD

3 Transfer Type Indicates WRITE or READ

transaction

4 Locked Access Indicates the Locked access to slave

5 Master ID Indicates the Master from which the

transaction is initiated, it covers;

 0-for Master-0

 1-for Master-1

6 Slave ID Indicates the Slave to which the

transaction is Sent, it covers;

 0-for Slave-0

 1-for Slave-1

 2-for Slave-2

 3-for Default slave

7 Cross of

Master ID and

Locked access

Indicates the locked access between

all the masters

8 Cross of

Master ID,

Size, Transfer

Type and Burst

Type

Indicates combination of Size,

Transfer Type and Burst Type across

all masters

Table 1: Functional Cover Points

5) Environment:

Environment is the place holder where all the verification

components are declared and created, also connection

between the different models are done in the environment.

Example connecting the Monitor port to the Scoreboard

import.

Fig 7: Environment

6) TestBench Top:

This is the top most component in the verification

Testbench, in this design and verification environment are

integrated and connected together with the help of interfaces.

Fig 8: TestBench Top

7) TestCases:

Test Case is the verification component in which the

verification environment is declared and created. Declaration,

Creation of sequence and running the sequence on particular

driver in order to drive the stimulus to design is done in this

component.

Testcase examples are single write read test, increment

write read test, master-1 access slave-0 test, master-1

unlocked access priority check test, master-1 locked access

priority check test etc,

C. Results

1) Single Write and Read

Below are the waveform for the burst type SINGLE and the

transfer size of HALFWORD. As shown in waveform,

WRITE is done to address 0x0D61D85A with the data

0x000046DD. On reading with the address 0x0D61D85A the

read data is same as written data 0x000046DD.

Fig 9: Single Read Waveform

2) Master-1 Locked Access:

As Master-1 requested the locked access to slave-0, on

request Master-0 request for the slave-0, access will be

granted on completion of transfer from master-1.

Fig 10: Master-1 Locked Access Waveform

Functional Verification of AHB Bus Matrix with UVM Methodology

 9 www.ijeart.com

3) Functional Coverage:

Below snapshot shows the functional coverage with the

cover points and cross across them.

Fig 11: Functional Coverage Snapshot

III. CONCLUSION

For an ASIC design functional verification is necessary in

order to check the correctness and quality of the design. In this

paper functional verification of AHB Bus Matrix is explained

by considering the SystemVerilog as verification language

and UVM as verification methodology.

REFERENCES

[1] (Reference paper) "An Overview of On-Chip Buses", Milica Mitic and

Mile Stoj ´ cev http://es.elfak.ni.ac.rs/Papers/Facta_2006.pdf

[2] “Multichannel AMBA AHB with multiple arbitration technique”

Communications and Signal Processing (ICCSP), 2014 International

Conference on Date of Conference: 3-5 April 2014

[3] Cortex-M System Design Kit Technical Reference Manual,

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0479b/DDI047

9B_cortex_m_system_design_kit_r0p0_trm.pdf

[4] AHB Specification "AMBA® 3 AHB-Lite Protocol"

http://mazsola.iit.uni-miskolc.hu/~drdani/docs_arm/IHI0033A_AMB

A3_AHB_Lite.pdf

[5] “1800-2017 - IEEE Standard for SystemVerilog--Unified Hardware

Design, Specification, and Verification Language”

[6] “1800.2-2017 - IEEE Standard for Universal Verification

Methodology Language Reference Manual”

Praveena H. U is doing Mtech in VLSI and Embedded Systems from

Visvesvaraya Technological University, Belagavi. Completed BE from BTL

Institute of Technology. Area of interest is ASIC Verification.

Santhosh N. S Lecture, Acharya Institution, Bangalore. Area of interest

is ASIC Design.

Amaresha S. K Asst. Professor, VTU Ext. Center, UTL Technologies,

Bangalore. Area of interest is RTL Design and Physical Design.

