

International Journal of Engineering and Advanced Research Technology (IJEART)

 ISSN: 2454-9290, Volume-3, Issue-2, February 2017

 1 www.ijeart.com

Abstract— Software Development Life Cycle (SDLC)

Models are the frameworks used to design, develop and test the

software project. The SDLC models are set of procedures which

are to be followed during the software development process.

These SDLC models make sure that the software development is

according to the needs of the client/customer and insure

software will design within the given timeframe and budget.

There are many SDLC models used during software

development process. These models are also referred as

Software Development Process Models (SDPM). Each process

model follows a sequence of steps, in order to ensure success in

the process of software development. We have different types of

SDLC models. The SDLC models are waterfall model, iterative

model, spiral model, V-model, agile model, RAD model and

prototype model. Each of these models has its own weaknesses

and strengths. In this paper I develop a new model called

Z-SDLC model for software development that lays special

emphasis on client/customer satisfaction and also tries to fulfil

the objective of the Software Engineering for the development of

high quality software product within timeframe/schedule and

budget. The new proposed model is designed in such a way that

it allows client/customer and software company to interact

freely with each other in order to understand and implement

requirements in a healthier way.

Index Terms— Client Satisfaction, SDLC Phases and Models,

Software Development Process Model (SDPM), Z-SDLC Model.

I. INTRODUCTION

 Software Development Life Cycle (SDLC) is a procedure by

which quality software project can be developed within

timeframe/schedule and budget and also according to the

client’s expectations and prospects. SDLC ensures quality of

software project. All software development processes models

include various activities like requirements gathering, system

feasibility, system analysis, system design, coding, testing,

implementation and maintenance. The software company or

the team of software developers have choice to select the

SDLC model. Each of these models has its own weaknesses

and strengths in different situations and circumstances. The

challenge is to select which model should be good under

certain conditions. Most of the present SDLC models have

little attention towards client/customer satisfaction. Yes

client/customer satisfaction matters. It matters not only to the

client/customer but even more to the software company

because it costs far less to retain a happy client/customer than

it does to find a new client/customer. Satisfying

client/customer is vital for staying in the market and in

modern world of global competition.

Client/customer satisfaction is very necessary for the

acceptance and delivery of the software project. Software

projects fails in the absence of client/customer satisfaction.

SDLC model must fulfill the requirements of the

client/customer as per there expectations and even delight

with the value of quality services.

II. SOFTWARE DEVELOPMENT LIFE CYCLE

Software Development Life Cycle (SDLC) is a process

followed for a software project, within a software

organization. It consists of a detailed plan describing how to

develop, maintain, replace and alter or enhance specific

software. The life cycle defines a methodology for improving

the quality of software and the overall development process.

SDLC is a process used by software industry to design,

develop and test high quality software. The SDLC aims to

produce a high quality software that meets or exceeds

client/customer expectations, reaches completion within

times and cost estimates. It is also called as Software

development process. The SDLC is a framework defining

tasks performed at each step in the software development

process. ISO/IEC 12207 is an international standard for

software life-cycle processes. It aims to be the standard that

defines all the tasks required for developing and maintaining

software [1], [12].

The following figure is a graphical representation of the

various stages of a typical SDLC.

A. Planning and Requirement Analysis

B. Defining Requirements

C. Designing the Product Architecture

D. Building or Developing the Product

E. Testing

F. Deployment

G. Maintenance

Fig 1: Software Development Life Cycle

A. Planning and Requirement Analysis

Requirement analysis is the most important and fundamental

stage in SDLC. It is performed by the senior members of the

team with inputs from the customer, the sales department,

market surveys and domain experts in the industry. This

Z-SDLC Model: A New Model For Software

Development Life Cycle (SDLC)

Syed Zaffar Iqbal, Muhammad Idrees

Alhamd Islamic University, Quetta-Pakistan

Z-SDLC Model A New Model For Software Development Life Cycle (SDLC)

 2 www.ijeart.com

information is then used to plan the basic project approach

and to conduct product feasibility study in the economical,

operational and technical areas. Planning for the quality

assurance requirements and identification of the risks

associated with the project is also done in the planning stage.

The outcome of the technical feasibility study is to define the

various technical approaches that can be followed to

implement the project successfully with minimum risks [12].

B. Defining Requirements

Once the requirement analysis is done the next step is to

clearly define and document the product requirements and get

them approved from the customer or the market analysts. This

is done through Software Requirement Specification (SRS).

SRS document which consists of all the product requirements

to be designed and developed during the project life cycle

[12].

C. Designing the Product Architecture

SRS is the reference for product architects to come out with

the best architecture for the product to be developed. Based

on the requirements specified in SRS, usually more than one

design approach for the product architecture is proposed and

documented in a Design Document Specification (DDS). This

DDS is reviewed by all the important stakeholders and based

on various parameters as risk assessment, product robustness,

design modularity, budget and time constraints, the best

design approach is selected for the product [12].

D. Building or Developing the Product

In this stage of SDLC the actual development starts and the

product is built. The programming code is generated as per

DDS. If the design is performed in a detailed and organized

manner, code generation can be accomplished without much

hassle. Developers have to follow the coding guidelines

defined by their organization and programming tools like

compilers, interpreters, debuggers etc are used to generate the

code. Different high level programming languages such as C,

C++, Pascal, Java and PHP are used for coding.

The programming language is chosen with respect to the type

of software being developed.

E. Testing the Product

This stage is usually a subset of all the stages as in the modern

SDLC models, the testing activities are mostly involved in all

the stages of SDLC. However this stage refers to the testing

only stage of the product where products defects are reported,

tracked, fixed and retested, until the product reaches the

quality standards defined in the SRS [12].

F. Deployment in the Market

Once the product is tested and ready to be deployed it is

released formally in the appropriate market. Sometime

product deployment happens in stages as per the

organizations business strategy. The product may first be

released in a limited segment and tested in the real business

environment User acceptance testing (UAT).

G. Maintenance

Then based on the feedback, the product may be released as it

is or with suggested enhancements in the targeting market

segment. After the product is released in the market, its

maintenance is done for the existing customer base [12].

III. SDLC MODELS

There are various software development life cycle models

defined and designed which are followed during software

development process. These models are also referred as

Software Development Process Models (SDPM). Each

process model follows a series of steps unique to its type, in

order to ensure success in process of software development.

Following are the most important and popular SDLC models

followed in the industry:

A. Waterfall Model

B. RAD Model

C. Prototype Model

A. Waterfall Model

The Waterfall Model was first process model to be

introduced provided by Winston W. Royce in 1970. It is also

referred to as a linear-sequential life cycle model. It is very

simple to understand and use. In a waterfall model, each phase

must be completed before the next phase can begin and there

is no overlapping in the phases. The waterfall model

illustrates the software development process in a linear

sequential flow; hence it is also referred to as a

linear-sequential life cycle model. This means that any phase

in the development process begins only if the previous phase

is complete. In waterfall model phases do not overlap.

In the waterfall approach, the whole process of software

development is divided into separate phases. In waterfall

model, typically, the outcome of one phase acts as the input

for the next phase sequentially. Following is a diagrammatic

representation of different phases of waterfall model.

1. Requirement Analysis

2. System Analysis

3. Implementation

4. Verification

5. Maintenance

Fig 2: Waterfall Model

Every software developed is different and requires a

suitable SDLC approach to be followed based on the internal

and external factors. Some situations where the use of

Waterfall model is most appropriate are:

 Requirements are very well documented, clear and fixed

 Product definition is stable

 Technology is understood and is not dynamic

 There are no ambiguous requirements

 Ample resources with required expertise are available to

support the product

International Journal of Engineering and Advanced Research Technology (IJEART)

 ISSN: 2454-9290, Volume-3, Issue-2, February 2017

 3 www.ijeart.com

Pros

1) Simple and easy to understand

2) Easy to manage

3) Clearly defined stages

4) Well understood milestones

5) Easy to arrange tasks

Cons

1) High amounts of risk and uncertainty

2) It is difficult to measure progress within stages

3) Cannot accommodate changing requirements

4) Adjusting scope during the life cycle can end a project

5) No working software is produced until late during the

life cycle [13].

B. Rapid Application Development (RAD) Model

The Rapid Application Development (RAD) model is

based on prototyping and iterative development with no

specific planning involved. The process of writing the

software itself involves the planning required for developing

the product. RAD focuses on gathering customer

requirements through workshops or focus groups, early

testing of the prototypes by the customer using iterative

concept, reuse of the existing prototypes (components),

continuous integration and rapid delivery.

Following image illustrates the RAD Model:

Fig 3: RAD Model

RAD model can be applied successfully to the projects in

which clear modularization is possible. If the project cannot

be broken into modules, RAD may fail.

Following are the typical scenarios where RAD can be

used:

 RAD should be used only when a system can be

modularized to be delivered in incremental manner.

 It should be used if there’s high availability of designers

for modeling

 It should be used only if the budget permits use of

automated code generating tools

 RAD SDLC model should be chosen only if domain

experts are available with relevant business knowledge

 Should be used where the requirements change during

the course of the project and working prototypes are to

be presented to customer in small iterations of 2-3

months

Pros

1) Progress can be measured

2) Reduced development time

3) Increases reusability of components

4) Quick initial reviews occur

5) Encourages customer feedback

Cons

1) Only system that can be modularized can be built using

RAD.

2) Requires highly skilled developers/designers

3) High dependency on modeling skills

4) Inapplicable to cheaper projects as cost of modeling

and automated code generation is very high

5) Requires user involvement throughout the life cycle

[14].

C. Prototype Model

The Software Prototyping refers to building software

application prototypes which display the functionality of the

product under development but may not actually hold the

exact logic of the original software. Software prototyping is

becoming very popular as a software development model, as

it enables to understand customer requirements at an early

stage of development. It helps get valuable feedback from the

customer and helps software designers and developers

understand about what exactly is expected from the product

under development.

Prototype is a working model of software with some

limited functionality. The prototype does not always hold the

exact logic used in the actual software application and is an

extra effort to be considered under effort estimation.

Prototyping is used to allow the users evaluate developer

proposals and try them out before implementation. It also

helps understand the requirements which are user specific and

may not have been considered by the developer during

product design.

Following is the stepwise approach to design a software

prototype:

 Basic Requirement Identification

 Developing the initial Prototype

 Review of the Prototype

 Revise and enhance the Prototype

Fig 4: Prototype Model

Software Prototyping is most useful in development of

APPLICATION CODE

Z-SDLC Model A New Model For Software Development Life Cycle (SDLC)

 4 www.ijeart.com

systems having high level of user interactions such as online

systems. Systems which need users to fill out forms or go

through various screens before data is processed can use

prototyping very effectively to give the exact look and feel

even before the actual software is developed. Software that

involves too much of data processing and most of the

functionality is internal with very little user interface does not

usually benefit from prototyping. Prototype development

could be an extra overhead in such projects and may need lot

of extra efforts.

Pros

1) Increased user involvement in the product even before

implementation

2) Reduces time and cost as the defects can be detected

much earlier.

3) Quicker user feedback is available leading to better

solutions.

4) Missing functionality can be identified easily

5) Confusing or difficult functions can be identified

Cons

1) Risk of insufficient requirement analysis owing to too

much dependency on prototype

2) Users may get confused in the prototypes and actual

systems

3) Practically, this methodology may increase the

complexity of the system as scope of the system may

expand beyond original plans

4) Developers may try to reuse the existing prototypes to

build the actual system, even when it’s not technically

feasible

5) The effort invested in building prototypes may be too

much if not monitored properly [15].

IV. NEW PROPOSED Z-SDLC MODEL

The new Z-SDLC model is planned in such a way that it

allows software company and client to freely interact with

each other in order to understand the requirements of software

project in a good way to develop a good quality software

within a given timeframe and budget.

SDLC process model start with the client’s requirements so

the proposed model tries to find every requirements like

functional requirements, non-functional requirements and

user requirements of the client/customer. It helps in

developing a good quality of software product that satisfies

the client/customer needs. The scope of computer based

system products, client satisfaction is very much dependent

on how system development process works to build

operational product that satisfy the client’s need and also

related with the expected requirements.

Finally, client satisfaction depends upon the good

understanding about the client needs and associated user

requirements for a better software product and the capability

to connect those requirements to the software company. In

addition, client satisfaction and confidence depends upon the

level of product guarantee offered throughout the SDLC.

Understanding to the requirements problems inevitably leads

to poor client/customer and software company relationship,

unnecessary re-work and exceed the budget and timeframe.

The client satisfaction is totally depended on client needs for

this reason Z-SDLC model focus on the initial phases.

My proposed Z-SDLC model include the following:

Fig 5: Z-SDLC Model

A. SYSTEM ANALYST TEAM (Requirement Gathering

Plan)

The System Analyst team have a sufficient knowledge of

computer science, software engineering, software

development processes, software applications, operating

system, as well as domain knowledge like various business

functions to be performed. The system analyst team

coordinates with the risk factor team and technical team.

System Analyst team deals with the client for Identify

Problem, Breakdown Requirements, Make a Prototype,

Finalize the Requirements, Feasibility Study, Approval of

SRS and any ambiguity of client is also discuss and solved by

the system analyst team.

1. Identify the Problem

2. Identify the Requirements

3. Breakdown Requirements

4. Finalize the Requirements

5. Feasibility Study

6. Approval of SRS Document

7. Make a Prototype

Fig 6: System Analyst Team

The system analyst team identifies the requirements and

divide all the requirements into different features and then

International Journal of Engineering and Advanced Research Technology (IJEART)

 ISSN: 2454-9290, Volume-3, Issue-2, February 2017

 5 www.ijeart.com

gets the existing software whose requirements match with the

current proposed software requirements.

The system analyst team breakdown the requirements into

two parts:

1. Developed Requirement

2. Non-Developed Requirements

Developed requirements are those requirements which are

already implemented in some existing software.

Non-developed requirements are those requirements which

are not implemented by any of the existing software, mean

these are the fresh features and need to develop.

After finalizing requirements the system analyst team is

now going quickly start work on Software Requirement

Specification (SRS) Document and feasibility study report

like estimates the budget, timeframe and effort which are

mandatory for the development of the software product, as the

SRS document is complete the system analyst team passes this

SRS document (the final requirements document) to the

technical team as well as to the risk factor team.

The system analyst team again with the collaboration of

technical team can make a software prototype and show this

prototype to the client/customer for approval. Client/customer

also gave his/her reviews, suggestions and feedback to the

system analyst team in order to change of the requirement(s).

The result of breaking requirements and showing existing

software as dummy to the client/customer is that the

client/customer gets the feel of graphics, functionality and

features of product. It helps both client/customer and software

company to identify, discovers and implements the

requirements efficiently. Now these requirement are passed to

the technical team for final design and development of the

software product.

If client wants any change(s) in the final requirements

during the process, then system analyst firstly checks whether

it can be implemented or not and what are impacts of change

on the whole process in terms of cost, timeframe and effort. If

change(s) is possible and its impact is little or very less then

change(s) will be accommodated.

B. TECHNICAL TEAM (Development Plan)

Technical team is an expert team and its team members are

updated with new technologies and new software products. It

is a technically expert team. This team interacts with system

analyst team during its working. Technical team studies the

SRS document (the requirements document) received from

the system analyst team which in turn get these requirements

from the client/customer.

The member of technical team is full of skills and interacts

with system analyst team. Technical team works on

non-developed requirements. This team studies the feasibility

of requirements to check whether these are technically

possible or not. This team also identifies and resolves the

various risk associated with the implementation of

non-developed requirements with the collaboration of risk

factor team. After feasibility study and risk analysis the

technical team finally verify the final SRS document, check

the prototype provided to the client/customer and start work

on the following phases, i.e. Designing, Coding, Testing,

Implementation, Maintenance each of these phase also

followed by validation process.

1. Designing

2. Coding

3. Testing

4. Implementation

5. Feedback and Maintenance

Fig 7: Technical Team

C. RISK FACTOR TEAM (Success Approval Plan)

What is Risk?

Risk are future uncertain events with a probability of

occurrence and a potential for loss. Risk identification and

management are the main concerns in every software project.

Effective analysis of software risks will help to effective

planning and assignments of work [16].

Risks are identified, classified and managed before actual

execution of program. These risks are classified in different

categories.

 Schedule Risk

 Budget Risk

 Operational Risks

 Technical risks

 Programmatic Risks

Fig 8: Risk Factor Team

The risk management in SDLC model is started as per the

client’s requirements. In the beginning, these requirements

are in the mind of the client. The system analyst team by using

Z-SDLC Model A New Model For Software Development Life Cycle (SDLC)

 6 www.ijeart.com

a software development model has to identify, discover,

understand and fulfill the requirements of the client in order to

satisfy the client. The requirement phase of the Software

Development Life Cycle transforms the idea in the mind of

the client into a formal document known as Software

Requirement Specification (SRS). The quality of the SRS

impacts client satisfaction, system validation, quality of final

software, software development cost and schedule. A high

quality SRS is necessary to produce the high quality software.

A system analyst team and technical team are fail to satisfy the

client because of the three reasons: If software fail to discover

requirements, If software fail to implement these

requirements and If software changes rapidly.

The client usually does not understand Software or the

Software Development Life Cycle (SDLC) and the software

company often does not understand the clients problem and

application area. But the Z-SDLC model permits the client

and software company to interact freely with each other for

the better understating of the problem and in identifying the

requirements feature. Moreover, In Z-SDLC model the

requirements are breakdowns into two parts i.e. developed

requirements and non-developed requirements. For

developed requirements the present most similar most

software modules with matching the client’s requirements are

shown to the client so that the client can easily identify and

express the requirement to the system analyst team. If the

identified requirements are not fulfilled or implemented

accurately then it leads to disappointment and dissatisfaction

of client. As, In Z-SDLC model requirements are breakdown

into developed and non-developed requirements. In the base

of non-developed requirements the system analyst team can

make a feasibility study report and SRS document. This risk

factor team also identifies the various risk associated with the

requirements, so that the decision can be taken about the

deployment/implementation of requirements. If some

non-developed requirements are not technical possible then

the client is informed about this during the early stage so that

the client does accept the system with satisfaction and have no

objection.

We know that the software requirements are frequently

changes. Some of the changes are expected due to changing

requests. But many changes come because the requirements

are not properly taken and analyzed and not enough effort was

used to validate the requirements. But Z-SDLC model is

designed in such a way that the software company can focus

on proper requirement gathering. It is estimated 20% to 40%

of total development effort [17], [18] in a software project is

due to rework much of which occurs due to change in

requirements. The cost of the requirement phase is normally

about 6% of the total project cost [19].

Consider the complete software project the total effort

requirement is estimated to be 40 person-months. For this

project, the requirement phase consumed 3 person months. If

by spending a 50% effort in the requirement phase, we reduce

the total requirement change required by 33% then the total

effort due to rework will reduce from 10 to 20 person months

to 6 to 12 person months, resulting in total saving of 5 to 11

person months, i.e. a saving of 10 to 20% of total cost [4].

The following details explain how the new proposed

Z-SDLC model is applicable. The details given below explain

how the new suggested Z-SDLC model has the command of

satisfying the client/customer.

V. DEPLOYMENT SOFTWARE

Software is developed for the clinical laboratory named as

Logical LIMS (Laboratory Information and Management

System). There are various SDLC models for the software

development but I choose Waterfall model, Prototype Model,

Incremental Model and my new designed Z-SDLC model for

software development and comparing the working of existing

models with the Z-SDLC.

Let’s check software developed by traditional SDLC

models.

A. Software Development by Waterfall model

The waterfall model is a linear sequential model. We

considered the requirements, check them and moved towards

the designing phase followed by the coding and testing phases

for software development named as LIMS-1, but the LIMS-1

was not accepted by Mr. Haji Asif, Technologist Lab

In-charge (the client) because they were not satisfied. As the

client want to change it in terms of graphics, functionality and

features the waterfall model does not allow to change after

completing the requirements so, it fails to convey client about

the software product.

Fig 9: Software development by waterfall model

B. Software Development by Prototype model

The prototype model build prototype to give feel of the

proposed software to the client. As we already have Logical

LIMS requirement so, we build prototype and showed it to the

client. After client’s feedback, we changed it and again

showed it to the client. After building and showing three

prototypes, client finalized the requirements and we passed

these final requirements to next phases for software

development and named it as LIMS-2. Finally LIMS-2 was

delivered to the client. But building prototype affects cost,

schedule and effort which get exceeded.

International Journal of Engineering and Advanced Research Technology (IJEART)

 ISSN: 2454-9290, Volume-3, Issue-2, February 2017

 7 www.ijeart.com

Fig 10: Software development by prototype model

C. Software Development by Incremental model

The Incremental model is an evolution of waterfall model

which has number of iterations and after each iteration, we get

a working product. Initially we analyzed the requirements and

go through the designing, coding and testing phases and

released the first iteration. The first iteration working product

was given to the client and after getting client’s feedback we

changed it and released the product of the second iteration.

With each iteration functionality and feature of the product

get enhanced and after three iterations we got LIMS-3 which

was finally delivered to the client. Incremental model reduce

the cost of building prototype because instead of building

prototype it accommodate the changes into the working

product but due to iterations, schedule get exceeded which in

turn effect the cost and effort.

Fig 11: Software development by incremental model

D. Software Development by Z-SDLC model

Z-SDLC model is a new model for the software development.

The striking feature of this model is the client satisfaction.

Firstly, system analyst team deal with Mr. Haji Asif,

Technologist Lab In-charge (the client) to discover the

problem and requirements. After discovering the problem the

system analyst team breakdown this requirement into

developed requirements and non-developed requirements.

Accordingly, the system analyst team have now a

breakdown of available requirements i.e. developed and

non-developed requirements but in this case there was no any

non-developed requirements. The system analyst team

finalize the requirement and also start work on the feasibility

study and SRS document.

The system analyst team with the collaboration of technical

team analyzed the available requirements provided by the

system analyst that is present in SRS document for the

proposed system and searched the most matching software for

them. He found three such software whose requirements

matched with the proposed software’s requirements

previously build for laboratories.

Now the system analyst team showed the software to the

client so that the client got the feel of proposed software and

also identifies the undiscovered requirements and gave his

suggestion and feedback to the system analyst team. The

system analyst team again passed these suggestions to the

technical team and the process goes on until the client

finalized the requirements. System analyst team passed final

requirements to the risk factor team for the risk analysis and

the requirement validation.

After validation and resolving various risk associated with

the final requirements, these final requirements were passed

to technical team for final software product. The technical

team start work on the following phases i.e. designing,

coding, testing, implementation and maintenance followed by

the validation process to develop the final product named as

Logical LIMS. Logical LIMS was approved by the client

because it satisfied the client’s requirements within budget

and given timeframe because budget and timeframe were not

disturbed or affected due to various increments or by building

prototype. Finally, User Acceptance Test is signed with the

client.

Fig 12: Software development by Z-SDLC model

Z-SDLC Model A New Model For Software Development Life Cycle (SDLC)

 8 www.ijeart.com

VI. COMPARISON OF Z-SDLC WITH OTHER MODELS

Let’s check the comparison of other models with new

Z-SDLC model.

Table 1A: Comparison of Z-SDLC model with other models

Features Waterfall Prototype

Requirement Cleared Not Cleared

Software Cost Low High

Schedule On time Not on time

Risk Factor High Low

User Involvement Low High

Initial Product Feel No Yes

Client Satisfaction Low Medium

Guarantee of Success Low Medium

Table 1B: Comparison of Z-SDLC model with other models

Features Incremental Z-SDLC

Requirement Cleared Cleared

Software Cost Medium Low

Schedule Not on time On time

Risk Factor Medium Low

User Involvement High High

Initial Product Feel No Yes

Client Satisfaction Medium High

Guarantee of Success Medium High

VII. CONCLUSIONS

In this research paper various models like a waterfall, RAD

and prototype models have been considered and various

topographies like requirement specification, cost, risk factor,

user involvement, success rate, simplicity is analyzed. Each

model has its own pros and cons. In the requirement gathering

phase the software developer can select the suitable software

development life cycle model according to the needs. My

suggested work can be concise as the construction of the new

Z-SDLC model for more efficient software development. The

goal of the Software Engineers are to grow the software

industry at bigger stage and want to make software with high

quality within budget and schedule. My suggested plan tries to

accomplish the objective of Software Engineers by showing

existing matching software as a prototype to the

client/customer for discovering the requirements efficiently

from the client/customer in order to approximation of cost,

time frame, schedule, work and effort more accurately and

precisely.

REFERENCES

[1] Roger S. Pressman, Ph.D. “Software Engineering a Practitioner’s

Approach, Fifth Edition: McGraw-Hill Higher Education, 2001, pp. 53-193

[2] Roger S. Pressman, Ph.D. “Software Engineering a Practitioner’s

Approach, Fifth Edition: McGraw-Hill Higher Education, 2001, pp.

245-507

[3] Ian Sommerville, "Software Engineering", Addison-Wesley, 2007

[4] The Software Development Life Cycle (SDLC) for Database Applications,

First Edition, Digital Publication LLC 2005, pp. 14-21.

[5] Rod Stephens, "Beginning Software Engineering", John Wiley & Sons,

23-Mar-2015

[6] Elvis Foster, "Software Engineering: A Methodical Approach", Apress,

16-Dec-2014

[7] Shari Lawrence Pfleeger, Joanne M. Atlee, "Software Engineering: Theory

and Practice", Prentice Hall, 2010

[8] RAJIB MALL, "FUNDAMENTALS OF SOFTWARE ENGINEERING",

PHI Learning Pvt. Ltd., 18-May-2009

[9] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn

Regnell, Anders Wesslén, "Experimentation in Software Engineering",

Springer Science & Business Media, 16-Jun-2012

[10] Hossein Hassani, How to do the Final Year Projects A Practical Guideline

for Computer Science and IT Students, 2012. Available:

www.bookboon.com

[11] Shari Lawrence Pfleeger and Joanne M. Atle, “Software Engineering

theory and practice” Fourth Edition Pearson Publishing

[12] SDLC Overview Tutorials Point Simple Easy Learning. Available:

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

[13] SDLC Overview Tutorials Point Simple Easy Learning. Available:

https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm

[14] SDLC Overview Tutorials Point Simple Easy Learning. Available:

https://www.tutorialspoint.com/sdlc/sdlc_rad_model.htm

[15] SDLC Overview Tutorials Point Simple Easy Learning. Available:

https://www.tutorialspoint.com/sdlc/sdlc_software_prototyping.htm

[16] Types of Risks in Software Projects, Basics of Software testing, Quality

assurance, Test strategy | Last Updated: "December 14, 2016". Available:

http://www.softwaretestinghelp.com/types-of-risks-in-software-projects/

[17] A Brief Summary of the Original COCOMO Model. Available:

http://www.mhhe.com/engcs/compsci/pressman/information/olc/COCOM

O.html

[18] M. A. Parthasarathy, "Practical Software Estimation: Size, Effort, and

Scheduling of Projects" InformIT, Jan 25, 2008. Available:

http://www.informit.com/articles/article.aspx?p=705249&seqNum=4

[19] Sarah Afzal Safavi and Maqbool Uddin Shaikh COMSATS Institute

Pakistan, "Effort Estimation Model for each Phase of Software

Development Life Cycle", Source Title: Handbook of Research on

E-Services 2011 Available:

http://www.igi-global.com/chapter/effort-estimation-model-each-phase/46

269

[20] PK.Ragunath, S.Velmourougan (1, January 2010) "Evolving A New Model

(SDLC Model-2010) For Software Development Life Cycle (SDLC)",

IJCSNS International Journal of Computer Science and Network Security,

VOL.10 No.1.

[21] Shubham Dwivedi (2, February 2016) Software Development Life Cycle

Models - A Comparative analysis International Journal of Advanced

Research in Computer and Communication Engineering, Vol. 5, Issue 2.

[22] Naresh Kumar, A. S. Zadgaonkar, Abhinav Shukla (March 2013) Evolving

a New Software Development Life Cycle Model SDLC-2013 with Client

Satisfaction, International Journal of Soft Computing and Engineering

(IJSCE) ISSN: 2231-2307, Volume-3, Issue-1.

[23] Clifford J. Berg "Software Development Life Cycle", Prentice Hall PTR

New Jersey 1998 Available:

http://www.shazsoftware.com/bookextracts/software_development_life_c

ycle.php

[24] Vishwas Massey, Prof. K. J Satao, Evolving a new Software Development

Life Cycle Model (SDLC) incorporated with release management,

International Journal of Engineering and Advanced Technology (IJEAT),

volume-I, Aril 2012,

[25] Vishwas Massey, Prof. K. J Satao, Comparing various SDLC models and

the new proposed model on the basis of available methodology,

International Journal of Advanced Research in Computer Science and

Software Engineering (IJARCSSE), volume 2, April 2012,

[26] Seema , SonaMalhotra , “comparative analysis of popular SDLC models “,

International Journal of advances in computing and information

technology, July 2012.

Syed Zaffar Iqbal works as a Lecturer at Alhmad

Islamic University, Quetta-Pakistan. He received his

MCS degree from University of Balochistan in 2010.

His research interests include are software engineering,

database management system, programming and

development. He is a supervisor of final year projects at

his university and ICT R&D Funded projects. He is the

author of computer science books. He is also running a software company named

as Logical Creations as Managing Director. Contact: 0092 343 8244401

Muhammad Idrees works as a Lecturer in

Mathematics at Government Boys Degree College,

Nushki Balochistan. He received his MSc

Mathematics from University of the Punjab, MCS

from Virtual University of Pakistan and M.Phil

Scholar in Mathematics at University of Balochistan,

Quetta. His research interests include are Fuzzy

Logic, Fuzzy Algebras and Theoretical Computer Science. He is also an advisor

in Logical Creations.

Contact: 0092 321 8040866

http://www.bookboon.com/
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_rad_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_software_prototyping.htm
http://www.softwaretestinghelp.com/types-of-risks-in-software-projects/
http://www.mhhe.com/engcs/compsci/pressman/information/olc/COCOMO.html
http://www.mhhe.com/engcs/compsci/pressman/information/olc/COCOMO.html
http://www.informit.com/articles/article.aspx?p=705249&seqNum=4
http://www.igi-global.com/chapter/effort-estimation-model-each-phase/46269
http://www.igi-global.com/chapter/effort-estimation-model-each-phase/46269
http://www.shazsoftware.com/bookextracts/software_development_life_cycle.php
http://www.shazsoftware.com/bookextracts/software_development_life_cycle.php

	PointTmp

