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 

Abstract— This paper discusses a discrete multispecies 

Gilpin-Ayala competition system. We first achieve the 

permanence of the system. Assume that the coefficients in the 

system are almost periodic sequences, we obtain the sufficient 

conditions for the existence of a unique almost periodic solution 

which is globally attractive. One example together with 

numerical simulation indicates the feasibility of the main results. 

 

Index Terms—Permanence ， Almost periodic solution ，

Discrete， Gilpin-Ayala competition system，Global attractivity 

 

I. INTRODUCTION 

  As we all known, investigating the almost periodic 

solutions of discrete population dynamics model with 

feedback control has more extensively practical application 

value(see [1–9] and the references cited therein).Wang [2] 

considered a nonlinear single species discrete with feedback 

control and obtain some sufficient conditions which assure 

the unique existence and global attractivity of almost positive 

periodic solution. Niu and Chen [5] studied a discrete 

Lotka-Volterra competitive system with feedback control and 

obtain the existence and uniqueness of the almost periodic 

solution which is uniformly asymptotically stable. 

In this paper, we investigate the dynamic behavior of the 

following discrete multispecies Gilpin-Ayala competition 

model with feedback controls 

 
where {aij(k)}, {bi(k)}, {ei(k)}, {fi(k)} and {gij(k)} are 

bounded nonnegative almost periodic sequences such that 

 
i, j = 1, 2, · · · , n, k∈Z.  

Denote as Z and Z
+
 the set of integers and the set of 

nonnegative integers, respectively. For any bounded sequence 

{g(n)} defined on Z, define 

 
 From the point of view of biology, in the sequel, we 

assume that x(0) = (x1(0), x2(0), · · · , xn(0), u1(0), u2(0), · · · , 

un(0)) > 0. Then it is easy to see that, for given x(0) > 0, the 

system (1.1) has a positive sequence solution x(k) = (x1(k), 

x2(k), · · · , xn(k))(k ∈ Z
+
) passing through x(0). 

With the stimulation from the works [10–13], the main 

 
 

purpose of this paper is to obtain a set of sufficient conditions 

to ensure the existence of a unique globally attractive positive 

almost periodic solution of system (1.1) with initial condition 

(1.3). 

The remaining part of this paper is organized as follows: In 

Section 2, we will introduce some definitions and several 

useful lemmas. In the next section, we establish the 

permanence of system (1.1). Then, in Section 4, we establish 

sufficient conditions to ensure the existence of a unique 

positive almost periodic solution which is globally attractive. 

The main results are illustrated by an example with numerical 

simulation in Section 5. Finally, the conclusion ends with 

brief remarks in the last section. 

II. PRELIMINARIES 

First, we give the definitions of the terminologies involved. 

Definition 2.1([14]) A sequence x: Z→R is called an 

almost periodic sequence if the ε-translation set of x 

 
is a relatively dense set in Z for all ε > 0; that is, for any given 

ε > 0, there exists an integer l(ε) > 0 such that each interval of 

length l(ε) contains an integer τ∈E{ε, x} with 

 
τ is called an ε-translation number of x(n). 

Denition 2.2( [15]) A sequence x : Z
+
 → R is called an 

asymptotically almost periodic sequence if 

x(n) = p(n) + q(n), ∀n ∈ Z
+
, 

where p(n) is an almost periodic sequence and q(n)→0，

n→∞. 

Denition 2.3( [16]) A solution (x1(k), x2(k), · · · , xn(k)) of 

system (1.1) is said to be globally attractive if for any other 

solution (x
*

1(k), x
*
2(k), · · · , x

*
n(k)) of system (1.1), we have  

 
Now, we present some results which will play an 

important role in the proof of the main result. 

Lemma 2.1([17]) If {x(n)} is an almost periodic sequence, 

then {x(n)} is bounded. 

Lemma 2.2([18]) {x(n)} is an almost periodic sequence if 

and only if, for any sequence mi⊂Z, there exists a 

subsequence {mik}⊂{mi} such that the sequence {x(n +mik)} 

converges uniformly for all n∈Z as k→∞. Furthermore, the 

limit sequence is also an almost periodic sequence. 

Lemma 2.3( [15]) {x(n)} is an asymptotically almost 

periodic sequence if and only if, for any sequence mi ⊂ Z 

satisfying mi >0 and mi→∞ as i→∞ there exists a subsequence 

{mik} ⊂ {mi} such that the sequence {x(n + mik )} converges 

uniformly for all n ∈ Z
+
 as k→∞. 
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Lemma 2.4([17]) Suppose that {p1(n)} and {p2(n)} are 

almost periodic real sequences. Then {p1(n)+p2(n)} and 

{p1(n)p2(n)} are almost periodic;1/p1(n) is also almost 

periodic provided that p1(n) ≠0 for all n ∈Z. 

Moreover, if ε > 0 is an arbitrary real number, then there 

exists a relatively dense set that is ε−almost periodic common 

to {p1(n)} and {p2(n)}. 

Lemma 2.5( [19]) Assume that sequence {x(n)} satisfies 

x(n) > 0 and 

 
for n∈N, where a(n) and b(n) are non-negative sequences 

bounded above and below by positive constants. Then 

 
Lemma 2.6( [20]) Assume that sequence {x(n)} satisfies 

 

 
and x(N0)>0, where a(n) and b(n) are non-negative sequences 

bounded above and below by positive constants and N0∈N. 

Then 

 
Lemma 2.7( [21]) Assume that A > 0 and y(0) > 1, and 

further suppose that 

 
Then for any integer k ≤ n, 

 
Especially, if A < 1 and B is bounded above with respect to M, 

then 

 
Lemma 2.8( [21]) Assume that A > 0 and y(0) > 1, and 

further suppose that 

 
Then for any integer k ≤ n, 

 
Especially, if A < 1 and B is bounded below with respect to m, 

then 

 
 

 

III. PERMANENCE 

In this section, we establish the permanence result for 

system (1.1). 

Proposition 3.1 Assume that the conditions (1.2) and (1.3) 

hold, furthermore, 

 
then system (1.1) is permanent, that is, there exist positive 

constants mi, Mi, ni and Ni(i = 1, 2, · · · , n) which are 

independent of the solutions of system (1.1), such that for any 

positive solution (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , 

un(k)) of system (1.1), one has: 

 
Proof.  Let (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , un(k)) 

be any positive solution of system (1.1). From the first 

equation of system (1.1), it follows that 

 
Thus, as a direct corollary of  Lemma 2.5, according to (3.2), 

one has 

 
For any small positive constant ε > 0, from (3.3) it follows 

that there exists a positive constants K1 > 0 such that for all k > 

K1 and i = 1, 2, · · · , n, 

 
For k ≥ K1, from (3.4) and system (1.1), we have 

 
Then, as a direct corollary of Lemma 2.7, according to (3.5), 

one has 

 
Letting ε→0, it follows that 

 
Thus, there exists a positive integer K2 > K1, we have for k > 

K2 

 
For k ≥ K2, from (3.7) and system (1.1), we have 

 
Assuming that b

l
i− e

u
iNi > 0, for any ε > 0, there exists a 

positive integer K3 > K2 such that bi(k) −ei(k)(Ni + ε) > 0 for 

k > K3. Thus, as a direct corollary of Lemma 2.6, according to 

(3.8), one has 

 
where 

 
Letting ε → 0, it follows that 

 
 

where 

 
From (3.9), for any ε > 0, there exists a positive integer K4 > 

K3 such that 

 
for k > K4. 

From (3.10) and system (1.1), we have 

 
Then, as a direct corollary of Lemma 2.8, according to (3.11), 

one has 
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Letting ε→0, it follows that 

 
Then, (3.3), (3.6), (3.9) and (3.12) show that system (1.1) is 

permanent. The proof is completed. 

Theorem 3.2 Assume that (1.2), (1.3) and (3.1) hold, then 

system (1.1) is permanent. 

 

We denote by Ω the set of all solutions (x1(k), x2(k), · · · , 

xn(k), u1(k), u2(k), · · · , un(k)) of system (1.1) satisfying mi ≤ 

xi(k) ≤ Mi, ni ≤ ui(k) ≤ Ni(i = 1, 2, · · · , n) for all k ∈ Z
+
. 

Proposition 3.3 Assume that (1.2), (1.3) and (3.1) hold. 

Then Ω ≠ Φ. 

Proof. By the almost periodicity of {aij(k)}, {bi(k)}, {ei(k)}, 

{fi(k)} and {gij(k)}, there exists an integer valued sequence 

{δp} with δp → +∞ as p → +∞ such that 

 

 

 
Let ε be an arbitrary small positive number. It follows from 

Theorem 3.3 that there exists a positive integer N0 such that 

 
Write xip(k) = xi(k + δp) and uip(k) = ui(k + δp) for k ≥ N0 − 

δp and p = 1, 2, · · · . For any positive integer q, it is easy to see 

that there exists a sequence {xip(k) : p ≥ q} such that the 

sequence xp(k) has a subsequence, denoted by {xip(k)} again, 

converging on any finite interval of Z
+
 as p → ∞. Thus we 

have a sequence {yi(k)} such that 

 
This, combined with 

 
gives us 

 
We can easily see that (y1(k), y2(k), · · · , yn(k), v1(k), 

v2(k), · · · , vn(k)) is a solution of system (1.1) and mi−ε ≤ 

yi(k) ≤ Mi + ε, ni − ε ≤ vi(k) ≤ Ni + ε for k ∈ Z
+
. Since ε is an 

arbitrary small positive number, it follows that mi ≤ yi(k) ≤ Mi, 

ni ≤ vi(k) ≤ Ni and hence we complete the proof. 

IV. GLOBAL ATTRACTIVITY AND ALMOST PERIODIC 

SOLUTION 

The main results of this paper concern the global 

attractivity of almost periodic solution of system (1.1) with 

conditions (1.2), (1.3) and (3.1). 

 

Theorem 4.1 Assume that (1.2), (1.3), (3.1) and 

 
hold. Then any positive solution (x1(k), x2(k), · · · , xn(k), 

u1(k), u2(k), · · · , un(k)) of system (1.1) is globally attractive. 

Proof. Assume that (p1(k), p2(k), · · · , pn(k), v1(k), 

v2(k), · · · , vn(k)) is a solution of system (1.1) satisfying 

(1.2) and (1.3). Let 

 
Since 

 

 
where λi(k)∈(0, 1). 

Similarly, we get 

 
where ξj(k)∈(0, 1). 

To complete the proof, it suffices to show that 

 
In view of (H1), we can choose ε > 0 such that 

 
Let  

 
then ρ < 1. According to Theorem 3.2, there exists a positive 

integer k0 ∈ Z
+
 such that 

 

 
for k ≥ k0. 

Notice that λi(k)∈[0, 1] implies that pi(k) exp{λi(k)ui(k)} 

lies between pi(k) and xi(k),  λj(k) ∈ [0, 1] implies that pj(k) 

exp{λj(k)uj(k)} lies between pj(k) and xj(k). From (4.1), we 

get 
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i = 1, 2, · · · , n, for k ≥ k0. 

In view of (4.3), we get 

 

 
This implies 

 

 
Then (4.2) holds and we can obtain 

 

 
Therefore, positive solution (x1(k), x2(k), · · · , xn(k), u1(k), 

u2(k), · · · , un(k)) of system (1.1) is globally attractive. 

 

Theorem 4.2 Assume that (1.2), (1.3), (3.1) and (H1) hold. 

Then system (1.1) admits a unique almost periodic solution 

which is globally attractive. 

 

Proof. It follows from Proposition 3.1 that there exists a 

solution (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , un(k)) of 

system (1.1) satisfying mi ≤ xi(k) ≤ Mi, ni ≤ ui(k) ≤ Ni, k ∈Z
+
. 

Suppose that (x1(k), x2(k), · · · , xn(k), u1(k), u2(k), · · · , 

un(k)) is any solution of system (1.1), then there exists an 

integer valued sequence {k
'
p}, k

'
p→ +∞ as p → +∞, such that 

(x1(k + k
'
p), x2(k + k

'
p), · · · , xn(k +k

'
p), u1(k + k

'
p), u2(k + 

k
'
p), · · · , un(k + k

'
p)) is a solution of the following system 

 
From above discussion and Theorem 3.2, we have that not 

only (x1(k+k
'
p), x2(k+k

'
p), · · · , xn(k+k

'
p), u1(k+k

'
p), u2(k + 

k
'
p), · · · , un(k + k

'
p)) but also (Δx1(k + k

'
p),Δx2(k + 

k
'
p), · · · ,Δxn(k + k

'
p),Δu1(k + k

'
p),Δu2(k +k

'
p), · · · ,Δun(k + k

'
p)) 

are uniformly bounded, thus (x1(k + k
'
p), x2(k + k

'
p), · · · , xn(k 

+ k
'
p), u1(k + k

'
p), u2(k +k

'
p), · · · , un(k + k

'
p)) are uniformly 

bounded and equi-continuous. By Ascoli’s theorem[22], there 

exists a uniformly convergent subsequence (x1(k+kp), 

x2(k+kp), · · · , xn(k+kp), u1(k+kp), u2(k+kp), · · · , un(k+kp)) 

⊆(x1(k + k
'
p), x2(k + k

'
p), · · · , xn(k + k

'
p), u1(k + k

'
p), u2(k + 

k
'
p), · · · , un(k + k

'
p)) such that for any ε > 0, there exists a 

k0(ε) > 0 with the property that if m, n ≥ k0(ε) then 

 
which shows from Lemma 2.2 that (x1(k+kn), x2(k+kn), · · · , 

xn(k+kn), u1(k+kn), u2(k+kn), · · · , un(k+kn)) is asymptotically 

almost periodic sequence, then (x1(k + kn), x2(k + kn), · · · , 

xn(k + kn), u1(k + kn), u2(k +kn), · · · , un(k+kn)) are the sum of 

an almost periodic sequence (p1(k+kn), p2(k+kn), · · · , 

pn(k+kn), v1(k+kn), v2(k + kn), · · · , vn(k + kn)) and a sequence 

(q1(k + kn), q2(k + kn), · · · , qn(k + kn),w1(k + kn),w2(k 

+kn), · · · ,wn(k + kn)) defined on Z, such that 

 

 

where 

 
{pi(k)} and {vi(k)} are almost periodic sequences, i = 1, 

2, · · · , n. It means that 

 
In the following we show that {(p1(k), p2(k), · · · , pn(k), 

v1(k), v2(k), · · · , vn(k))} is an almost periodic solution of 

system (1.1). 

From the properties of an almost periodic sequence, there 

exists an integer valued sequence {δp}, δp → +∞ as p → +∞, 

such that 

 

 

 
It is easy to know that 

 
then we have 

 

 

 
This prove that p(k) = {(p1(k), p2(k), · · · , pn(k), v1(k), 

v2(k), · · · , vn(k))} satisfied system (1.1), and p(k) is a 

positive almost periodic solution of system (1.1). 

Now, we show that there is only one positive almost 

periodic solution of system (1.1). For any two positive almost 

periodic solutions (p1(k), p2(k), · · · , pn(k), v1(k), v2(k), · · · , 

vn(k)) and (z1(k), z2(k), · · · , zn(k), l1(k), l2(k), · · · , ln(k)) of 

system (1.1), we claim that pi(k) = zi(k), vi(k) = li(k) (i = 1, 

2, · · · , n) for all k∈Z
+
. 

Otherwise there must be at least one positive integer K
*
 ∈ 

Z
+
 such that pi(K

*
) ≠ zi(K

*
) or vj(K

*
) ≠ lj(K

*
) for a certain 

positive integer i or j, i.e., Ω1 = |pi(K
*
)−zi(K

*
)| > 0 or Ω2 = 

|vj(K
*
)−lj(K

*
)| > 0. So we can easily know that 

 

 
or 

 

 
which is a contradiction to (4.4). Thus pi(k) = zi(k), vi(k) = 

li(k)(i = 1, 2, · · · , n) hold for ∀k∈Z
+
. Therefore, system (1.1) 

admits a unique almost periodic solution which is globally 

attractive. This completes the proof of Theorem 4.2. 

V. EXAMPLE AND NUMERICAL SIMULATION 

In this section, we give the following example to check the 

feasibility of our result. 
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Example  Consider the following almost periodic discrete 

Gilpin-Ayala competition system with feedback controls 

 

 
By simple computation, we derive 

 

 
It is easy to see that the conditions of Theorem 4.2 are verified. 

Therefore, system (5.1) has a unique positive almost periodic 

solution which is globally attractive. Our numerical 

simulations support our results(see Figure1). 
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FIGURE1: Dynamic behavior of positive almost periodic 

solution (x1(k), x2(k), x3(k), u1(k), u2(k), u3(k)) of system (5.1) 

with the three initial conditions(0.99,0.97,1.2,0.071, 

0.068,0.044),(0.97,1.01,1.1,0.062,0.064,0.055) and (1.03, 

1.05,1.05,0.069,0.053,0.062) for k ∈ [1, 70], respectively. 

VI. CONCLUDING REMARKS 

In this paper, assuming that the coefficients in system 

(1.1) are bounded non-negative almost periodic sequences, 

we obtain the sufficient conditions for the existence of a 

unique almost periodic solution which is globally attractive. 

By comparative analysis, we find that when the coefficients in 

system (1.1) are almost periodic, the existence of a unique 

almost periodic solution of system (1.1) is determined by the 

global attractivity of system (1.1), which implies that there is 

no additional condition to add. 

Furthermore, for the almost periodic discrete 

multispecies Gilpin-Ayala competition system with 

timedelays and feedback controls, we would like to mention 

here the question of how to study the almost periodicity of the 

system and whether the existence of a unique almost periodic 

solution is determined by the global attractivity of the system 

or not. It is, in fact, a very challenging problem, and we leave 

it for our future work. 
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