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Abstract— In this paper, we study a discrete multispecies 

Lotka-Volterra competition system. Assume that the coefficients 

in the system are almost periodic sequences, we obtain the 

sufficient conditions for the existence of a unique almost 

periodic solution which is uniformly asymptotically stable by 

constructing a suitable Liapunov function. One example 

together with numerical simulation indicates the feasibility of 

the main results. 

 
Index Terms—Almost periodic solution, Discrete,  

Lotka-Volterra competition system,  Permanence, Uniformly 

asymptotically stable 

 

I. INTRODUCTION 

  In paper [1], Chen and Wu had investigated the dynamic 

behavior of the following discrete n-species Gilpin-Ayala 

competition model 

 
where i = 1, 2, · · · , n; xi(k) is the density of competition 

species i at k-th generation. aij(k) measures the intensity of 

intraspecific competition or interspecific action of 

competition species, respectively. bi(k) represents the 

intrinsic growth rate of the competition species xi. θij are 

positive constants. bi(k), aij(k), i, j = 1, 2, · · · , n are all 

positive sequences bounded above and below by positive 

constants. Obviously, when θij≡ 1, system (1.1) reduces to 

the traditional discrete multispecies Lotka-Volterra 

competition model 

 
For general non-autonomous case, sufficient conditions 

which ensure the permanence and the global stability of 

system (1.1) and (1.2) are obtained; For periodic case, 

sufficient conditions which ensure the existence of an unique 

globally stable positive periodic solution of system (1.1) and 

(1.2) are obtained. 

Notice that the investigation of almost periodic solutions 

for difference equations is one of most important topics in the 

qualitative theory of difference equations due to its 

applications in biology, ecology, neural network, and so 

forth(see [2–13] and the references cited therein). Wang and 

Liu [3] studied a discrete Lotka-Volterra competitive system 

 

 
 

With the help of the methods of the Lyapunov function, 

some analysis techniques, and preliminary lemmas, they 

establish a criterion for the existence, uniqueness, and 

uniformly asymptotic stability of positive almost periodic 

solution of the system. However, few work has been done 

previously on an almost periodic version which is 

corresponding to system (1.2). Then, we will further 

investigate the global stability of almost periodic solution of 

system (1.2). 

Denote as Z and Z
+
 the set of integers and the set of 

nonnegative integers, respectively. For any bounded sequence 

{g(n)} defined on Z, define 

 
   Throughout this paper, we assume that: 

(H1) aij(k) and bi(k) are bounded positive almost 

periodic sequences such that 

 
From the point of view of biology, in the sequel, we assume 

that x(0) = (x1(0), x2(0), · · · , xn(0)) > 0. Then it is easy to see 

that, for given x(0) > 0, the system (1.1) has a positive 

sequence solution x(k) = (x1(k), x2(k), · · · , xn(k))(k ∈ Z
+
) 

passing through x(0). 

The remaining part of this paper is organized as follows: In 

Section 2, we will introduce some definitions and several 

useful lemmas. In Section 3, by applying the theory of 

difference inequality, we present the permanence results for 

system (1.2). In Section 4, we establish the sufficient 

conditions for the existence of a unique uniformly 

asymptotically stable almost periodic solution of system (1.2). 

The main results are illustrated by an example with a 

numerical simulation in the last section. 

II. PRELIMINARIES 

First, we give the definitions of the terminologies involved. 

Definition 2.1([14]) A sequence x: Z→R is called an 

almost periodic sequence if the ε-translation set of x 

 
is a relatively dense set in Z for all ε > 0; that is, for any given 

ε > 0, there exists an integer l(ε) > 0 such that each interval of 

length l(ε) contains an integer τ∈E{ε, x} with 

 
τ is called an ε-translation number of x(n). 

Lemma 2.1([15]) If {x(n)} is an almost periodic sequence, 

then {x(n)} is bounded. 

Lemma 2.2([16]) {x(n)} is an almost periodic sequence if 

and only if, for any sequence mi⊂Z, there exists a 

subsequence {mik}⊂{mi} such that the sequence {x(n +mik)} 
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converges uniformly for all n∈Z as k→∞. Furthermore, the 

limit sequence is also an almost periodic sequence. 

Lemma 2.3([15]) Suppose that {p1(n)} and {p2(n)} are 

almost periodic real sequences. Then {p1(n)+p2(n)} and 

{p1(n)p2(n)} are almost periodic;1/p1(n) is also almost 

periodic provided that p1(n) ≠0 for all n ∈ Z. 

Moreover, if ε > 0 is an arbitrary real number, then there 

exists a relatively dense set that is ε−almost periodic common 

to {p1(n)} and {p2(n)}. 

Lemma 2.4( [17]) Assume that sequence {x(n)} satisfies 

x(n) > 0 and 

 
for n∈N, where a(n) and b(n) are non-negative sequences 

bounded above and below by positive constants. Then 

 
Lemma 2.5( [17]) Assume that sequence {x(n)} satisfies 

 
and x(N0)>0, where a(n) and b(n) are non-negative sequences 

bounded above and below by positive constants and N0∈N. 

Then 

 
Consider the following almost periodic difference system: 

 
where f : Z

+
 ×SB → R

K
, SB = {x ∈ R

k
 :║x║< B}, and f(n, 

x) is almost periodic in n uniformly for x∈ SB and is 

continuous in x. The product system of (2.1) is the following 

system: 

 
and Zhang [18] obtained the following Theorem. 

Theorem 2.6( [18]) Suppose that there exists a Lyapunov 

function V (n, x, y) defined for n ∈ Z
+
, ║x║< B, ║y║< B 

satisfying the following conditions: 

 

 
and a is increasing}; 

 

 

 
is a constant, and 

 
Moreover, if there exists a solution φ(n) of (2.1) such that ║ 

φ(n)║≢B∗< B for n∈Z
+
, then there exists a unique 

uniformly asymptotically stable almost periodic solution p(n) 

of system (2.1) which is bounded by B∗. In particular, if f(n, x) 

is periodic of period ω, then there exists a unique uniformly 

asymptotically stable periodic solution of system (2.1) of 

period ω. 

III. PERMANENCE 

In this section, we establish a permanence result for system 

(1.2), which can be found by Lemma 2.4 and 2.5. 

Proposition 3.1 Assume that (H1) holds. Then any positive 

solution (x1(k), x2(k), · · · , xn(k)) of system  (1.2) satisfies 

 
where 

 
Proposition 3.2 Assume that (H1) and 

 
hold for all i = 1, 2, · · · , n, where Mi, i = 1, 2, · · · , n are 

defined by (3.1). Then for every solution (x1(k), x2(k), · · ·, 

xn(k)) of system (1.1) satisfies 

 
where 

 

 
Theorem 3.3 Assume that (H1) and (H2) hold, then system 

(1.1) is permanent. 

 

The next result tells us that there exist solutions of system 

(1.2) totally in the interval of Theorem 3.3. We denote by Ω 

the set of all solutions (x1(k), x2(k), · · · , xn(k)) of system (1.2) 

satisfying mi ≢ xi(k) ≢ Mi(i =1, 2, · · · , n) for all k ∈ Z
+
. 

Proposition 3.4 Assume that (H1) and (H2) hold. Then Ω≠

Φ. 

Proof. By the almost periodicity of {aij(k)} and {bi(k)}, there 

exists an integer valued sequence {δp} withδp → +∞ as p → 

+∞ such that 

 
Let ε be an arbitrary small positive number. It follows from 

Theorem 3.3 that there exists a positive integer N0 such that 

 
Write xip(k) = xi(k + δp) for k ≣ N0 − δp and p = 1, 2, · · · . 

For any positive integer q, it is easy to see that there exists a 

sequence {xip(k) : p ≣ q} such that the sequence xp(k) has a 

subsequence, denoted by {xip(k)} again, converging on any 

finite interval of Z as p→∞. Thus we have a sequence {yi(k)} 

such that 

 
This, combined with 

 

 
gives us 

 
We can easily see that (y1(k), y2(k), · · · , yn(k)) is a solution 

of system (1.2) and mi − ε ≢yi(k)≢ Mi + ε for k ∈Z
+
. Since ε 

is an arbitrarily small positive number, it follows that mi ≢

yi(k)≢ Mi and hence we complete the proof. 
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IV. ALMOST PERIODIC SOLUTION 

The main results of this paper concern the existence of a 

unique uniformly asymptomatically stable almost periodic 

solution of system (1.2) by constructing a non-negative 

Lyapunov function. 

Theorem 4.1 Assume that (H1), (H2) and 

 
hold, where 

 

 
i = 1, 2, · · · , n. Then there exists a unique uniformly 

asymptotically stable almost periodic solution (x1(k), x2(k), 

· · · , xn(k)) of system (1.2) which is bounded by Ω for all k ∈ 

Z
+
. 

Proof. Let pi(k) = ln xi(k), i = 1, 2, · · · , n. From system (1.2), 

we have 

 
From Proposition 3.4, we know that system (4.1) have 

bounded solution (p1(k), p2(k), · · · , pn(k)) satisfying 

 
Hence, |pi(k)| ≢ Ai, where Ai = max{| ln mi|, | ln Mi|}, i = 1, 

2, · · · , n. 

For X ∈ R
n
, we define the norm 

n

i

i 1

X x


 . 

Consider the product system of system (4.1) 

 
We assume that Q = (p1(k), p2(k), · · · , pn(k)), W = (q1(k), 

q2(k), · · · , qn(k)) are any two solutions of system (4.1) 

defined on Z
+
×S∗; then,║Q║≢ B, ║W║≢ B, where B 

=

n

i i

i 1

{A B }


 , S∗ = {(p1(k), p2(k), · · · , pn(k))| ln mi≢ pi(n) 

≢ ln Mi, i = 1, 2, · · · , n, k ∈ Z
+
}. 

Let us construct a Lyapunov function defined on Z
+
 × S∗ 

× S∗ as follows: 

 

It is obvious that the norm ║Q−W║=
n

i 1
 |pi(k)−qi(k)| is 

equivalent to ║Q−W║∗=
n

i 1
  (pi(k)−qi(k))

2
]

1/2
; that is, there 

are two constants c1 > 0, c2 > 0, such that 

 
then 

 
Let 

 
then, condition (i) of Theorem 2.6 is satisfied. 

Moreover, for any 

 
we have 

 
where 

 
and 

 
Thus, condition (ii) of Theorem 2.6 is satisfied. 

Finally, calculating the ΔV(k) of V(k) along the solutions 

of system (4.2), we have 

 

 
By the mean value theorem, it derives that 

 
where ξi(k) lies between e

pi(k)
 and e

qi(k)
. Then, we have 
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Then, we have 

 
where 

 

 
Hence, we have 

 

 

where β =
1 i n
min
 

{βi}. That is, there exists a positive constant 0 

< β < 1 such that 

 
From 0<β <1, the condition (iii) of Theorem 2.6 is satisfied. 

So, according to Theorem 2.6, there exists a unique uniformly 

asymptotically stable almost periodic solution (p1(k), 

p2(k), · · · , pn(k)) of system (4.1) which is bounded by S∗ for 

all k ∈ Z
+
. It means that there exists a unique uniformly 

asymptotically stable almost periodic solution (x1(k), 

x2(k), · · · , xn(k)) of system (1.2) which is bounded by Ω for 

all k ∈ Z
+
. This completed the proof. 2 

Remark 4.2 If n = 2, the conditions of Theorem 4.1 can be 

simplified. Therefore, we have the following results. 

Corollary 4.3 Let n = 2, assume that (H1), (H2) and 

 
hold, where 

 

 
i, j = 1, 2, j≠ i. Then there exists a unique uniformly 

asymptotically stable almost periodic solution (x1(k), x2(k)) 

of system (1.2) which is bounded by Ω for all k ∈ Z
+
. 

V. NUMERICAL SIMULATION 

In this section, we give the following examples to check the 

feasibility of our results. 

Example 5.1 Consider the discrete multispecies 

Lotka-Volterra competition system: 

 
A computation shows that 

 

 
and moreover, we have 

 
that 0 < min{β1, β2, β3} < 1. It is easy to see that the condition 

(H2) and (H3) are satisfied. Hence, there exists a unique 

uniformly asymptotically stable almost periodic solution of 

system (5.1). Our numerical simulations support our 

results(see Figs.1,2 and 3). 

 
FIGURE1: Dynamic behavior of the first component x1(k) of 

the solution (x1(k), x2(k), x3(k)) to system (5.1) with the initial 

conditions (0.87,1.02,1.03), (0.93,1.13,0.86) and 

(0.81,0.97,0.97) for k ∈ [1, 80], respectively. 

 
FIGURE2: Dynamic behavior of the second component x2(k) 
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of the solution (x1(k), x2(k), x3(k)) to system (5.1) with the 

initial conditions (0.87,1.02,1.03), (0.93,1.13,0.86) and 

(0.81,0.97,0.97) for k ∈ [1, 80], respectively. 

 
FIGURE3: Dynamic behavior of the third component x3(k) of 

the solution (x1(k), x2(k), x3(k)) to system (5.1) with the initial 

conditions (0.87,1.02,1.03), (0.93,1.13,0.86) and 

(0.81,0.97,0.97) for k ∈ [1, 80], respectively. 
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