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 

Abstract— In this paper we study the properties of Hilbert 

space operators, commutatorsand Schroedinger equation. We 

also explore their applications in quantum physics and explain 

the links between the abstract mathematics and the reality in the 

physical sense.   

 

Index Terms—Commutators, Schrödinger equation, IT 

 

I. INTRODUCTION  

Hilbert spaces are complete inner product spaces with a lot o 

interesting properties[2]. Operators on Hilbert spaces are also 

very interesting with a lot of applications to quantum physics. 

In this paper, we consider general Hilbert space operators, 

commutators and Schrödinger equations[1]  and explore their 

applications to quantum mechanics.   

 

II. PRELIMINARIES 

 

   Consider some vector which can have complex components 

to be symbolized by a . 

The dual or conjugate of the vector will be symbolized by 

a .  Thus,  a a *. 

 

   There is some set of basis vectors that can be multiplied by 

constant coefficients and added together to give a .  

 

         

 
j

jj xcxcxca ...2211    (1.1) 

 

The constant c can be complex.  The basis vectors form the 

basis or vector space.  There can be one to an infinite number 

of basis vectors. 

 

   As an example, consider a position vector R in three 

dimensions.  We can choose to represent the vector in a 

variety of vector spaces, each with different basis vectors.  

Let’s use the familiar rectangular vector space with the three 

basis vectors of  i, j, k.  We can write R as 

 

   R = xi + yj +zk = 

j

 cjxj      (2.2) 
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where c1=x,  c2=y,  c3=z and  x1=i,  x2=j,  x3=k.  Notice that the 

components of the vector are the constants cj.  In Dirac 

notation, this would become: 

 

          R c xj

j

j     (2.3) 

 

   This example uses a conventional vector quantity, namely 

position.  But one can extend the concept of vector to include 

“unconventional” quantities.  For instance, a function  

all of the values of x.  The vector  has a component  (x) for 

each basis vector.  Note that there are an infinite number of 

basis vectors in this case!  We can therefore write an 

expression for the vector  as        

    








 ( ) ( )x x dx x dx x      (2.4) 

Any two vectors in a vector space S satisfy closure under 

addition and scalar multiplication.  Formally, if  

a b, S , then 

          
a b b a

c a c b

   

 

S

S1 2

(2.5) 

   We now define an operation between 2 vectors called the 

scalar product  such that the product is a scalar (it can be 

complex).  We also require that if the scalar product is 

performed between a vector and one of the basis vectors, then 

the scalar is the coefficient c: 

            scalar product   b a b a b a   so 

that  b a  = a number  

                                                            and so that 

x a cj j  

 

   For ordinary vectors, the scalar product is simply the dot 

product.  Consider our position vector example above.  Note 

that the x-component of vector R can be found by taking the 

dot product of R with i=x1: 

         x x R  x R1 1    (2.6) 
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  For a function, then, we can find the value of the function 

(x) [one of the “components” of  “vector” ] by taking the 

scalar product between x [the basis “vector”] and vector : 

           ( )x x      (2.7) 

Substituting (2.7) into (2.4) gives  

           




 x dx x   (2.8) 

and we now have the definition for a unit operator.  

Examining (2.8) we see that  

          x dx x




  1      (2.9)  

   This unit operator is useful in deriving expressions and in 

vector algebra as we shall see immediately.  What happens if 

we take the scalar product of two “vectors” that are functions 

of x?  Let the two functions be (x) and (x).  Let the two 

vectors representing the functions be   and  .  Then 

the scalar product of the two vectors is   .  Let us use 

the unit operator to write 

       










 x dx x     (2.10) 

 

Bringing the two vectors into the integrand gives 

        




 x dx x      (2.11) 

Now we have established in (2.7) that we can write 

 ( )x x  and  ( )x x .  Taking the complex 

conjugate of the second expression gives 

        *( ) *x x x      (2.12) 

so that (2.11) becomes 

         




 *( ) ( )x x dx            (2.13) 

Equation (2.13) tells us how to evaluate the scalar product of 

two vectors that are functions. 

   *Notice that the scalar product is written with a bracket 

sometimes still used. 

  Properties of Vectors 

   Now that we have defined vectors and the scalar product, 

we can list some properties.  Note that c is a scalar which can 

be complex. 

         

 

 

 

b c a c b a

b a a b a b a

b a a b

a a

a



  







' '

*

0

0 0

   and is real

(2.14) 

III. BASIC CONCEPTS 

   These definitions involving the scalar product should look 

very familiar based on your experience with regular vectors. 

   The magnitude of a a a
1 2/

. 

   Vectors a  and b  are orthogonal if a b  0 . 

   Vector a  is a unit vector if a a  1.  A unit vector is 

also called a normalized vector. 

   Two vectors are orthonormal if they are orthogonal and if 

they are both normalized. 

IV. DIRAC DELTA FUNCTION   

   While we are discussing vector theory as developed by 

Dirac, it is interesting to see how he came upon the delta 

function which bears his name.  Consider inserting the unit 

operator into the bracket expression for the function x) in 

(2.7): 

         

   ( ) ' ' ' ' ' ( ' )x x x dx x x x dx x 








   

     (2.15) 

Notice that we have distinguished x and x’.  The unit operator 

must integrate over all possible values of x’ while x is just one 

of the possible values of x’.  Now the left side is the value of   

at one value of x’ (x’=x) while the right side involves a sum of 

the values of  at all values of x’.  There is no way that this 

can be true unless the scalar product  x x'  has an 

interesting property.  Namely, x x'  0  unless x=x’ and if 

x=x’ then the integral of x x  must give one.  Dirac called 

this strange scalar product the delta function: 

          x x x x' ( ' )      (2.16) 
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where        

 









 






xxdxxx

xxxx

='for      1')'(

 'for        0)'(       

    

 

V. OPERATOR THEORY 

 

   Operators operate on vectors to give other vectors:      

 A a b       (2.17)    

 

   We will be dealing with linear operators:       (i)  

   A a b A a A b        (2.18) 

                   (ii) 

  A c a cA a  

 

   

VI. SOME PROPERTIES OF OPERATORS 

 

         

 

 

   

 
   

   

   

   

   

 

A B a A a B a

A B a B A a

AB a BA a

AB a A B a

b A a b A a

  

  







*usually    (2.19) 

 

 

  * Operators usually do not commute.  We define the 

commutator of two operators as 

 

            ,     A B AB BA     (2.20) 

        

      If the operators do commute, then   , A B  0 . 

 

   It is convenient to define the adjoint of an operator as 

follows.  Operator A  has an adjoint, denoted by A
 such 

that  

 

           b A a a A b *  
 (2.21) 

 

We will say more about the adjoint below. 

 

   We have developed a general definition of a vector, the 

scalar product, an operator, and various properties in a purely 

abstract, mathematical sense.  What is the connection to 

quantum physics?  Let us briefly describe the connection. 

 

   The quantum states of a physical system are identified as 

vectors.  In practice, this means that the wavefunctions are 

viewed as function vectors.  The components of the vectors 

are the values of the wavefunctions.  The components can 

change with position and time.  This means the function 

vectors can “point” in different directions as position and time 

vary.  If we fix the time to one value or have a 

time-independent system, then the basis vectors are the 

position values x in one dimension. 

 

   Dynamic variables (physical quantities of the motion like 

position, momentum, energy) have corresponding linear 

operators.  These quantities are also referred to as observables  

since they can be measured or observed.  We have already 

listed these operators in Part 1.  We will now simply use our 

notation of “^” above the operators instead of using curly 

brackets.  For instance, the momentum operator is 

          p i
x

  



. 

 

   In classical mechanics, the order of dynamic variables in 

equations doesn’t matter.  In quantum mechanics, the order of 

these variables in equations is very important!  This is because 

of how some of them operate on the wavefunction.  Formally, 

we can say that operators do not generally commute in 

quantum mechanics.  For instance,  ,    x p xp px   0 . 

 

   In addition to being linear, the adjoint of an operator of a 

dynamic variable is equal to the operator (  A A  ).  Such 

operators are called self-adjoint.  For example, the adjoint of 

the momentum operator is 

 

          p p i
x

    



  

 

We can demonstrate this by considering the momentum 

operator operating on the wavefunction of a free particle.  The 

wavefunction is of the form ( , ) ( )x t Aei kx t 
.  Now 

 

         

  ( ) ( )p i
x

i ik Ae ki kx t       





 

so 

         

      p k k k      

 

assuming that the wavefunction is normalized.  The complex 

conjugate of this scalar product is simply the scalar product 

itself: 

 

         

      * ( )* p k k p     

 

This fact, combined with the definition of the adjoint as 

expressed in (2.21), gives 
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         * p p p    

 

This can only be true if  p p  , i.e. the operator is 

self-adjoint.  The fact that operators of dynamic variables are 

self-adjoint can be used in the solving of certain physical 

systems, as we will see. 

 

   Let us examine the result of this connection between 

mathematics, Dirac notation, and physics in more detail. 

 

  We now write a one-dimensional, time-dependent 

wavefunction x,t) as a vector  .   The normalization of 

the wavefunction is expressed as 

 

         

     




 *( , ) ( , )x t x t dx 1     (2.22) 

 

How do we express an average value of a dyanmic variable?   

We already know how to evaluate it.  For example, to find the 

average value of position x we evaluate the integral 

 

          x x dx




 *     (2.23) 

 

Examine this equation a bit closer.  We can view the 

the operator x . This gives a new vector.  (2)  Now evaluate 

the scalar product of this new vector with the conjugate of  

 

 

          x x x     (2.24) 

 

The expression x is just short-hand for the middle 

expression and is commonly used. 

 

   Can you write the full Dirac notation expression and the 

integral expression for the average momentum of the particle? 

 

          p p   ?      (2.25)

      

 

 

VII. SCHROEDINGER OPERATORS 

 

  We can now express the one-dimensional time-independent 

Schroedinger equation as 

 

          H E       (2.26) 

 

You should verify that this is equivalent to the familiar 

differential equation version we have been using.  In terms of 

operator theory, this equation says that you operate on a 

vector and obtain another vector that is parallel to the first.  

The resulting vector is just a multiple of the original vector.  

This original vector and the operator have a very special 

relationship!  Usually, an operator will change the direction of 

a vector.   

 

   In general terms, if  A a c a  where c is a number (can 

be complex) then we call a  an eigenvector of operator A   

and c the eigenvalue .  

 

    Equation (2.26) then is an eigenvalue equation, and since 

the Hamiltonian is the total energy operator, we call   the 

energy eigenvector , (x) the energy eigenfunction or energy 

eigenstate, and E the energy eigenvalue.  For a physical 

sysytem in which energy is quantized, there are different 

eigenstates corresponding to the different energy eigenvalues.  

More than eigenstate may have the same energy.  Such states 

are called degenerate. 

Eigenstates & Measurement 

 

  We can now state some postulates about the measurement 

process in quantum mechanics in relation to the theory we 

have just developed.  We will make these postulates specific 

to the Hamiltonian and the energy eigenstates and 

eigenvalues, but they apply to any operator corresponding to a 

dynamic variable and its associated eigenstates and 

eigenvectors. 

 

1. If a quantum system is in an eigenstate   of the 

operator H , then a measurement of the energy will 

certainly give the eigenvalue E as a result. 

 

2. If the system is in a state such that a measurement of H  

is certain to give one particular result then the state is an 

eigenstate of H  and the result is the eigenvalue E 

corresponding to H . 

 

3. The result of measuring the energy is one of the energy 

eigenvalues.  If the system was not originally in an 

eigenstate then the measurement causes the system to 

"jump" into an eigenstate. 

 

 Corollary: If a measurement is repeated 

"immediately" after it is performed, the result 

 must be  unchanged.  Thus the state to which 

the system jumped as a result of the first 

measurement must be an  eigenstate with an 

eigenvalue corresponding to the measured 

value. 

 

4. Every energy eigenvalue is a possible result of the 

measurement of the energy. 

 

5. If the energy is measured with the system in a particular 

state, the eigenstates into which the system may jump due 

to the measurement are such that the original state is 

dependent on them, i.e. the original state is a linear 

combination of the eigenstates. 
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 Corollary: Since the original state can be any 

state, every state must be dependent on the 

eigenstates to which the system may jump.  The 

eigenstates form a complete set of states.  An 

operator whose eigenstates  form a complete 

set is called an observable.  

 

6. Suppose the system is in a state   (not necessarily an 

eigenstate) and a measurement of the energy is made a 

large number of times, with the system being put back 

into the original state after each measurement.  Then, the 

average of all of those measurements is 

E H    assuming that   is normalized. 
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